小学奥数思维训练 行程(一)相遇追及、电车问题(拓展训练) 学校:_____姓名:_____班级:_____考号:_____ 评卷人得分 一、解答题 1.从电车总站每隔一定时间开出一辆电车。甲与乙两人在一条街上沿着同一方向步行。甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。那么电车总站每隔多少分钟开出一辆电车? 2.小乐步行去学校的路上注意到每隔4分钟就遇到一辆迎面开来的公交车,到了学校小乐发现自己忘记把一件重要的东西带来了,只好借了同学的自行车以原来步行三倍的速度回家,这时小乐发现每隔12分钟有一辆公交车从后面超过他,如果小乐步行、骑车以及公交车的速度都是匀速的话,那么公交车站发车的时间间隔到底为多少? 3.下图中,外圆周长40厘米,画阴影部分是个“逗号”,两只蚂蚁分别从A,B同时爬行.甲蚂蚁从A出发,沿“逗号”四周顺时针爬行,每秒爬3厘米;乙蚂蚁从B出发,沿外圆圆周顺时针爬行,每秒爬行5厘米.两只蚂蚁第一次相遇时,乙蚂蚁共爬行了多少米? 4.A、B两地相距24千米,甲和乙两人分别由A、B两地同时相向而行,往返一次,甲比乙早返回原地.途中两人第一次相遇于C点,第二次相遇于点D.CD相距6千米,则甲、乙两人的速度比是为多少? 5.甲、乙二人分别从A、B两地同时出发,往返跑步.甲每秒跑3米,乙每秒跑7米.如果他们的第四次相遇点与第五次相遇点的距离是150米,求A、B两点间的距离为多少米? 6.甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇(不包括追上)多少次? 7.A、B两地相距1000米,甲从地、乙从地同时出发,在、两地间往返锻炼.乙跑步每分钟行150米,甲步行每分钟行60米.在30分钟内,甲、乙两人第几次相遇(含追及)时距B地最近?最近距离是多少? 8.李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始记时,直到最后一节车厢驶过窗口时,所记的时间是18秒.已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米,问货车行驶的速度是多少? 9.两条公路成十字交叉,甲从十字路口南1200米处向北直行,乙从十字路口处向东直行.甲、乙同时出发10分后,两人与十字路口的距离相等,出发后100分,两人与十字路口的距离再次相等,此时他们距十字路口多少米? 10.甲、乙、丙三人在学校到体育场的路上练习竞走,甲每分比乙多走10米,比丙多走31米.上午9点三人同时从学校出发,上午10点甲到达体育场后立即返回学校,在距体育场310米处遇到乙. 问:(1)从学校到体育场的距离是多少? (2)甲与丙何时相遇(精确到秒)? 试卷第1页,共3页 试卷第1页,共3页 参考答案: 1.11分钟 【解析】 【分析】 10分15秒=10.25分,同一方向发出的相邻两车之间的距离总是固定的,由此可得,解出电车速度,进而得出相邻两电车之间的距离,最后除以电车速度即可解答。 【详解】 10分15秒=10.25分 解:设电车的速度为x米/分。 (60+x)×10.25=(82+x)×10 615+10.25x=820+10x 0.25x=205 x=820 相邻两电车之间的距离:(82+820)×10 =902×10 =9020(米) 9020÷820=11(分钟) 答:电车总站每隔11分钟开出一辆电车。 【点睛】 此题主要考查学生对复杂行程问题的理解与应用。 2.4.8分钟 【解析】 【详解】 设公交车的间距为S,根据公式可得关系式: , 类似的关系:; 由两个关系式得到: 等式化简为: 根据公交车发车过程中的数量关系有,(其中t为发车的时间间隔) 因此有等式:, 将代入得到: (分钟) 3.1.5米 【解析】 【详解】 “逗号”的周长=外圆的周长, 乙 ... ...
~~ 您好,已阅读到文档的结尾了 ~~