
浙教版(2019)选择性必修1《第四章 树》2022年单元测试卷 一.选择题(共30小题) 1.若一棵二叉树的中序遍历序列为BIGDHAECF,后序遍历序列为IGHDBEFCA,则该二叉树的前序遍历序列为( ) A.ABCDEFGHI B.ABDGHICEF C.ABDHGICEF D.ABDG IHCEF 2.某二叉树的后序遍历序列为F一?—?—C一A一D,中序遍历序列为F一B一D一E一A一C,则其前序遍历序列为( ) A.D一B一A一F一E—C B.D一B一F一A一E一C C.D一E一F一A一B一C D.D一E一A一F一B一C 3.如果将数学表达式中的运算数和运算符视同为二叉树的每个节点,那么我们可以构造出各种表达式二叉树,如图所示的是一棵表达式二叉树。如果对该之叉树进行中序遍历,并加上括号后,就可以得到中缀表达式:( 9﹣4/2)*5+3。如果对该二叉树实行前序遍历,则可以得到的表达式为( ) A.+*﹣9/4253 B.+*﹣/42953 C.942/﹣*53+ D.942/﹣5*3+ 4.如图所示,有如下二叉树,关于此二叉树的说法中,描述正确的是( ) A.该二叉树的前序遍历为ABDGJCEFHI B.该树中共有3个叶子节点 C.若有前序遍历和后序遍历可以推导出唯一的二叉树 D.该树的深度为4 5.一棵包含10个节点的完全二叉树,其叶子节点的个数为( ) A.3 B.4 C.5 D.6 6.已知二叉树中序遍历序列是BEDAFHCIG,前序遍历序列是ABDECFHGI,它的后序遍历序列是( ) A.BDEFHCIGA B.IGHFEDCBA C.EDBFHIGCA D.EDBHFIGCA 7.已知二叉树T2的后序遍历序列为G﹣D﹣H﹣E﹣B﹣I﹣F﹣C﹣A,中序遍历序列是D﹣G﹣B﹣E﹣H﹣A﹣C﹣I﹣F,则二叉树T2的前序遍历序列为( ) A.A﹣B﹣D﹣G﹣E﹣H﹣C﹣I﹣F B.A﹣B﹣D﹣G﹣E﹣H﹣C﹣F﹣I C.A﹣B﹣D﹣G﹣E﹣H﹣F﹣C﹣I D.该二叉树形态不唯一,无法确定 8.已知一棵完全二叉树,其第 4 层有 3 个叶子节点,这棵二叉树的节点数量不可能是( ) A.25 B.24 C.11 D.10 9.已知一棵二叉树的前序遍历序列为:A﹣B﹣D﹣C﹣E,后序遍历序列为:D﹣B﹣E﹣C﹣A,则该二叉树是否能唯一确定?中序遍历序列是( ) A.能唯一确定,中序遍历序列为:B﹣D﹣A﹣E﹣C B.不能唯一确定,中序遍历序列可能为:B﹣D﹣A﹣E﹣C C.能唯一确定,中序遍历序列为:D﹣C﹣B﹣A﹣E D.不能唯一确定,中序遍历序列可能为:D﹣C﹣B﹣A﹣E 10.如图所示的二叉树,其节点的中序遍历的序列为( ) A.ABCDEFG B.GDBEACF C.GDEBFCA D.ABDGECF 11.如图a 为一棵二叉树,其数组实现示意图(部分)如图b 所示。 下列说法正确的是( ) A.该二叉树的前序遍历为 ABCDEFG B.该二叉树的高度为 3 C.该二叉树是完全二叉树 D.节点 G 存储在数组下标为 11 的位置 12.有一棵二叉树如图所示,该二叉树的后序遍历结果正确的是( ) A.XBCDAYEF B.FEYADCBX C.DBEAFXCY D.DEFABYCX 13.设一棵二叉树的中序遍历序列:becfad,后序遍历序列:efcbda,则二叉树前序遍历序列为( ) A.abcdef B.bdaefc C.abcefd D.abcfed 14.一棵具有124个叶子结点的完全二叉树,最多有( )个结点。 A.247 B.248 C.249 D.250 15.用顺序存储的方法,将完全二叉树中所有结点按层逐个从左到右的顺序存放在一维数组R[1..N]中,若结点R[i]有右孩子,则其右孩子是( ) A.R[2i﹣1] B.R[2i+1] C.R[2i] D.R[2/i] 16.设一棵二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树先序遍历序列为( ) A.adbce B.decab C.debac D.abcde 17.有一种元素除首元素没有前驱元素、尾元素没有后继元素外,其它元素都只有一个前驱元素和一个后继元素。具有以上特点的数据结构是( ) A.树结构 B.选择结构 C.线性结构 D.网状结构 18.在树形结构中,没有的是( )? A.根 ... ...
~~ 您好,已阅读到文档的结尾了 ~~