ID: 15884037

人教A版必修五1.2应用举例(含解析)

日期:2026-01-26 科目:数学 类型:高中试卷 查看:88次 大小:364410B 来源:二一课件通
预览图 1/5
人教,必修,应用,举例,解析
  • cover
人教A版必修五1.2应用举例 (共20题) 一、选择题(共12题) 如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔 ,速度为 ,飞行员先看到山顶的俯角为 ,经过 后又看到山顶的俯角为 ,则山顶的海拔高度为 A. B. C. D. 如图,为测得河对岸塔 的高,先在河岸上选一点 ,使 在塔底 的正东方向上,此时测得点 的仰角为 再由点 沿北偏东 方向走 到位置 ,测得 ,则塔 的高是 A. B. C. D. 若水平面上的点 在点 南偏东 方向上,则在点 处测得点 的方位角是 A. B. C. D. 如图所示,两座灯塔 和 与海岸观察站 的距离相等,灯塔 在观察站南偏西 方向上,灯塔 在观察站南偏东 方向上,则灯塔 在灯塔 的 方向上. A.北偏东 B.北偏西 C.南偏东 D.南偏西 魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点 ,, 在水平线 上, 和 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”, 称为“表距”, 和 都称为“表目距”, 与 的差称为“表目距的差”则海岛的高 A. B. C. D. 如图所示,两座相距 的建筑物 , 的高度分别为 ,, 为水平面,则从建筑物 的顶端 看建筑物 的张角为 A. B. C. D. 一船向正北方向航行,看见正西方向有两个相距 海里的灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 方向上,另一灯塔在船的南偏西 方向上,则这艘船的速度是 A. 海里/时 B. 海里/时 C. 海里/时 D. 海里/时 为测出所住小区的面积,某人进行了一些测量工作,所得数据如图所示,则小区的面积是 A. B. C. D. 某船在 处测得灯塔 在其南偏东 方向上,该船继续向正南方向行驶 海里到 处,测得灯塔在其北偏东 方向上,然后该船向东偏南 方向行驶 海里到 处,此时船到灯塔 的距离为 A. 海里 B. 海里 C. 海里 D. 海里 某人驾驶一艘小游艇位于湖面 处,测得岸边一座电视塔的塔底在北偏东 方向,且塔顶的仰角为 ,此人驾驶游艇向正东方向行驶 米后到达 处,此时测得塔底位于北偏西 方向,则该塔的高度约为 A. 米 B. 米 C. 米 D. 米 如图,, 两点在河的两岸,在 所在的河岸边选一定点 ,测量 的距离为 ,,,则 , 两点间的距离是 A. B. C. D. 如图,某炮兵阵地位于 点,两个观察所分别位于 , 两点.已知 为正三角形,且 ,当目标出现 点时,测得 ,,则炮兵阵地与目标的距离约是 A. B. C. D. 二、填空题(共4题) 如图所示,, 两点在河的两岸,一测量者在 所在的同侧河岸边选定一点 ,测得 的距离为 ,,,则 , 两点的距离为 . 海上有 , 两个小岛相距 ,从 岛望 岛和 岛成 的视角,从 岛望 岛和 岛成 的视角,那么 岛和 岛间的距离是 . 小明爸爸开车以 的速度沿着正北方向的公路行驶,小明坐在车里向外观察,在点 处望见电视塔 在北偏东 方向上, 分钟后到点 处望见电视塔在北偏东 方向上,则汽车在点 时与电视塔 的距离是 . 某船开始看见一灯塔在南偏东 方向,后来船沿南偏东 的方向航行 后,看见该灯塔在正西方向,则这时船与灯塔的距离是 . 三、解答题(共4题) 如图 ,点 为半径为 千米的圆形海岛的最东端,点 为最北端,在点 的正东 千米 处停泊着一艘缉私艇,某刻,发现在 处有一小船正以速度 (千米/小时)向正北方向行驶,已知缉私艇的速度为 (千米/小时). (1) 为了在最短的时间内拦截小船检查,缉私艇应向什么方向行驶?(精确到 ) (2) 海岛上有一快艇要为缉私艇送去给养,问选择海岛边缘的哪一点 出发才能行程最短?(如图 建立坐标系,用坐标表示点 的位置) 如图,游客从某旅游景区的景点 处上山至景点 处有两种路径.一种是从 沿直线步行到 ,另一种是先从 沿索道乘缆车到 ,然后从 沿直线步行到 ,现 ... ...

~~ 您好,已阅读到文档的结尾了 ~~