
1.3 简谐运动图像和公式 第一章 机械振动 教材P9 【观察思考】 【讨论与交流】 (1)细沙在薄板上形成什么形状的曲线? (2)落在薄板上的细沙的位置和各时刻摆球(漏斗)的位置有什么关系? (3)以速度v拉动木板时,我们得到的是乙图中的哪幅图? 以速度2v拉动木板时,我们得到的是乙图中的哪幅图? t x O 结论:简谐运动的位移———时间图像是正弦或余弦曲线 一、简谐运动的图像 1.物理意义:表示做简谐运动的某一质点各个时刻离开平衡位置的位移x随时间t变化的关系(x———t图象) 1 2 3 4 0 5 6 0.5 –0.5 x/m t/s 2.特点:简谐运动的图像是一条正弦(或余弦)曲线 3.图像信息 ①读:A、T、各时刻位移x ②判: 各时刻F、a、速度v的方向 某段时间内x、F、a、v、Ek、Ep的变化情况 ③求:某段时间内振子的路程 x/cm t/s 0 5 –5 2 3 1 4 例1、竖直悬挂的弹簧振子下端装有记录笔,在竖直面内放置记录纸。当振子上下振动时,以水平向左速度v=1m/s匀速拉动记录纸,记录笔在纸上留下记录的痕迹,建立坐标系,测得的数据如图,则振子振动的振幅为 ,频率为_____。 二、简谐运动的表达式 ????=????????????????(????????+????) ? ????=2????????=2???????? ? ????由物体的初始位置决定 ? ????=????sin(????????????????) ? ????=????sin(????????????????+????????) ? 三、简谐运动的相位、相位差 ????=????????????????(????????+????) ? 1.式中x表示振动质点相对平衡位置的位移 2.式中A表示振幅 3.式中ω叫做圆频率,描述的都是振动的快慢 4.式中(ωt+φ)表示相位,相当于一个角度,相位每增加2π,意味着物体完成了一次全振动 5.式中φ表示t=0时简谐运动质点所处的状态,称为初相位或初相 ????=????????????????(????????+????) ? 6.相位差:即某一时刻的相位之差。 两个具有相同ω的简谐运动,设其初相分别为φ1和φ2,其相位差Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1 提醒:相位差的取值范围一般为-π≤Δφ≤π,当Δφ=0时两运动步调完全相同,称为同相,当Δφ=π(或-π)时,两运动步调相反,称为反相 反相振动 同相振动 各个时刻相位相同 相位差为零 各个时刻相位相反 相位差为π 例2、一物体沿x轴做简谐运动,振幅为8 cm,频率为0.5 Hz,在t=0时位移是4 cm,且向x轴负向运动。试写出用正弦函数表示的振动方程 解:x=0.08 sin(πt+φ) m 将t=0 时,x=0.04 m代入得 0.04=0.08 sin φ 解得初相????=????6或5????6 ? 所求振动方程为:x=0.08 sin(πt+5????6) m ? 作业: 1、预习:导学案专题强化二(P35~P36) 2、完成:活页第3节(P25~P28)
~~ 您好,已阅读到文档的结尾了 ~~