课件编号17215661

专题十三 圆锥曲线中的最值与范围问题 学案

日期:2024-05-16 科目:数学 类型:高中学案 查看:27次 大小:674464Byte 来源:二一课件通
预览图 0
专题,十三,圆锥曲线,中的,最值,范围
    中小学教育资源及组卷应用平台 高中数学重难点突破 专题十三 圆锥曲线中的最值与范围问题 典例分析 几何法解决的最值模型 【例1-1】过椭圆+=1的中心任作一直线交椭圆于P,Q两点,F是椭圆的一个焦点,则△PFQ的周长的最小值为(  ) A.12        B.14        C.16        D.18 【例1-1】答案 D 解析 由椭圆的对称性可知,P,Q两点关于原点对称,设F′为椭圆另一焦点,则四边形PFQF′为平行四边形,由椭圆定义可知:|PF|+|PF′|+|QF|+|QF′|=4a=20,又|PF|=|QF′|,|QF|=|PF′|,∴|PF|+|QF|=10,又PQ为椭圆内的弦,∴|PQ|min=2b=8,∴△PFQ周长的最小值为:10+8=18. 【例1-2】已知点F为椭圆C:+y2=1的左焦点,点P为椭圆C上任意一点,点Q的坐标为(4,3),则|PQ|+|PF|取最大值时,点P的坐标为_____. 【例1-2】答案 (0,-1) 解析 设椭圆的右焦点为E,|PQ|+|PF|=|PQ|+2a-|PE|=|PQ|-|PE|+2.当P为线段QE的延长线与椭圆的交点时,|PQ|+|PF|取最大值,此时,直线PQ的方程为y=x-1,QE的延长线与椭圆交于点(0,-1),即点P的坐标为(0,-1). 【例1-3】椭圆+=1的左焦点为F,直线x=m与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是(  ) A.         B.         C.         D. 【例1-3】答案 C 解析 如图所示,设椭圆的右焦点为F′,连接MF′,NF′.因为|MF|+|NF|+|MF′|+|NF′|≥|MF|+|NF|+|MN|,所以当直线x=m过椭圆的右焦点时,△FMN的周长最大.此时|MN|==,又c===1,所以此时△FMN的面积S=×2×=.故选C. 【例1-4】设P为双曲线x2-=1右支上一点,M,N分别是圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m-n|=(  ) A.4          B.5          C.6          D.7 【例1-4】答案 C 解析 由题意得,圆C1:(x+4)2+y2=4的圆心为(-4,0),半径为r1=2;圆C2:(x-4)2+y2=1的圆心为(4,0),半径为r2=1.设双曲线x2-=1的左、右焦点分别为F1(-4,0),F2(4,0).如图所示,连接PF1,PF2,F1M,F2N,则|PF1|-|PF2|=2.又|PM|max=|PF1|+r1,|PN|min=|PF2|-r2,所以|PM| -|PN|的最大值m=|PF1|-|PF2|+r1+r2=5.又|PM|min=|PF1|-r1,|PN|max=|PF2|+r2,所以|PM|-|PN|的最小值n=|PF1|-|PF2|-r1-r2=-1,所以|m-n|=6.故选C. 【例1-5】已知点M(-3,2)是坐标平面内一定点,若抛物线y2=2x的焦点为F,点Q是该抛物线上的一动点,则|MQ|-|QF|的最小值是(  ) A.        B.3        C.        D.2 【例1-5】答案 C 解析 抛物线的准线方程为x=-,过Q作准线的垂线,垂足为Q′,如图.依据抛物线的定义,得|QM|-|QF|=|QM|-|QQ′|,则当QM和QQ′共线时,|QM|-|QQ′|的值最小,最小值为=. 【例1-6】已知抛物线的方程为x2=8y,F是其焦点,点A(-2,4),在此抛物线上求一点P,使△APF的周长最小,此时点P的坐标为_____. 【例1-6】答案  解析 因为(-2)2<8×4,所以点A(-2,4)在抛物线x2=8y的内部,如图,设抛物线的准线为l,过点P作PQ⊥l于点Q,过点A作AB⊥l于点B,连接AQ,由抛物线的定义可知△APF的周长为|PF|+|PA|+|AF|=|PQ|+|PA|+|AF|≥|AQ|+|AF|≥|AB|+|AF|,当且仅当P,B,A三点共线时,△APF的周长取得最小值,即|AB|+|AF|.因为A(-2,4),所以不妨设△APF的周长最小时,点P的坐标为(-2,y0),代入x2=8y,得y0=,故使△APF的周长最小的抛物线上的点P的坐标为. 【例1-7】已知抛物线C:x2=8y的焦点为F,动点Q在C上,圆Q的 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~