ID: 18964385

(沪教版2020必修第一册)高一数学上学期精品讲义 专题1.1 集合初步(重难点突破)(含解析)

日期:2026-02-21 科目:数学 类型:高中学案 查看:59次 大小:2400132B 来源:二一课件通
预览图 1/5
讲义,突破,重难点,初步,集合,专题
  • cover
专题1.1 集合初步 一、考情分析 二、考点梳理 1.集合的概念及其表示 ⑴.集合中元素的三个特征: ①.确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了. ②.互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的. ③.无序性:即集合中的元素无顺序,可以任意排列、调换。 ⑵.元素与集合的关系有且只有两种:属于(用符号“”表示)和不属于(用符号“”表示). ⑶.集合常用的表示方法有三种:列举法、Venn图、描述法. (4).常见的数集及其表示符号 名称 自然数集(非负整数集) 正整数集 整数集 有理数集 实数集 表示符号 N 或 Z Q R 集合间的基本关系 关系 自然语言 符号语言 Venn图 子集 集合A中所有元素都在集合B中(即若x∈A,则x∈B) A B(或B A) 真子集 集合A是集合B的子集,且集合B中至少有一个元素不在集合A中 AB(或BA) 集合相等 集合A,B中元素完全相同或集合A,B互为子集 A=B 【名师提醒】 子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集. 集合之间的基本运算 如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为 全集 ,全集通常用字母 U 表示; 集合的并集 集合的交集 集合的补集 图形 符号 A∪B={x|x∈A,或x∈B} A∩B={x|x∈A,且x∈B} UA={x|x∈U,且x A} 【名师提醒】 1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1,非空真子集个. 2.A B A∩B=A A∪B=B . 3.奇数集:. 4. 德 摩根定律: ①并集的补集等于补集的交集,即; ②交集的补集等于补集的并集,即. 【名师点睛】 1.判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性. 2. 集合中的元素具有三个特性,求解与集合有关的字母参数值(范围)时,需借助集合中元素的互异性来检验所求参数是否符合要求. 3.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识. 4.利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题. 5.求集合并集的两种基本方法: (1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解; (2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴求解. 6.求集合交集的方法为: (1)定义法, (2)数形结合法. (3)若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示. 三、题型突破 考点1 集合的概念及其表示 归纳总结:与集合中的元素有关问题的求解策略 (1)确定集合的元素是什么,即集合是(数轴)数集、(平面直角坐标系)点集还是其他类型的集合. (2)看这些元素满足什么限制条件. (3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性. 例1.(1).(集合的确定性)(2023·上海市奉贤区曙光中学高一月考)下列语言叙述中,能表示集合的是( ) A.数轴上离原点距离很近的所有点; B.太阳系内的所有行星 C.某高一年级全体视力差的学生; D.与大小相仿的所有三角形 (2).(集合的互异性)在集合,,中,的值可以是   A.0 B.1 C.2 D.1或2 【变式训练1-1】.(集合的确定性)下列四组对象中能构成集合的是(  ) A.宜春市第一中学高一学习好的学生 B.在数轴上与原点非常近的点 C.很小的实数 D.倒数等于本身的数 【变式训练1-2】.(集合的确定性)(2023·上海市嘉定区第一中学高一期中)当一个非空数集 ... ...

~~ 您好,已阅读到文档的结尾了 ~~