ID: 23031666

5.3 正方形-2024-2025学年浙教版八年级下册 同步分层作业(含解析)

日期:2025-10-14 科目:数学 类型:初中试卷 查看:52次 大小:1803025B 来源:二一课件通
预览图 1/5
正方形,-2024-2025,学年,教版,八年级,下册
  • cover
中小学教育资源及组卷应用平台 5.3 正方形 同步分层作业 1.下列结论中,正方形具有而菱形不一定具有的性质是(  ) A.对边平行且相等 B.邻边相等 C.对角线相等 D.面积等于对角线乘积的一半 2.如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,则∠E=(  ) A.90° B.45° C.30° D.22.5° 3.下列说法正确的是(  ) A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形 C.对角线相等且互相平分的四边形是矩形 D.对角线互相垂直且相等的四边形是正方形 4.如图,四边形ABCD中,AC、BD交于点O,则根据下列条件能判定它是正方形的是(  ) A.∠DAB=90°且AD=BC B.AB=BC且AC=BD C.∠DAB=90°且AC⊥BD D.AC⊥BD且AO=BO=CO=DO 5.四边形ABCD的对角线AC、BD交于点O,则能够判断它是一个正方形的是(  ) A.AO=CO,BO=DO B.AO=CO=BO=DO C.AO=CO,BO=DO,AC⊥BD D.AO=CO=BO=DO,AC⊥BD 6.如图,在正方形ABCD中,点G在BC边上,连接AG,DE⊥AG于点E,BF⊥AG于点F,若BF=4,DE=9,则EF的长为(  ) A.5 B.8 C.12 D.2 7.如图,正方形ABCD的边长为4,点E,F在对角线BD上,四边形AECF是菱形,且∠DAE=67.5°,则BE的长为(  ) A. B.2 C.4﹣4 D.6﹣4 8.我们都知道,四边形具有不稳定性.老师制作了一个正方形教具用于课堂教学,数学课代表小亮在取道具时不小心使教具发生了形变(如图),若正方形道具边长为10cm,∠D′=30°,则四边形的面积减少了(  ) A.50cm2 B. C.100cm2 D. 9.如图,已知P是正方形ABCD的对角线BD上一点,PE⊥DC,PF⊥BC,垂足分别是E,F,CE=3,CF=2,则AP的长为(  ) A.4 B.5 C. D. 10.正方形对角线长为8,则正方形的边长为     . 11.如图,矩形ABCD的对角线AC,BD相交于点O,再添加一个条件,使得四边形ABCD是正方形,可添加     (写出一个条件即可). 12.如图,已知四边形ABCD是菱形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件后,使四边形ABCD成为正方形,则应该选择的是     .(仅填序号) 13.在正方形ABCD中,对角线AC、BD交于点O,Q是CD上任意一点,DP⊥AQ,交BC于点P. 求证:(1)DQ=CP; (2)OP⊥OQ. 14.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF. (1)求证:四边形AFBD是平行四边形; (2)填空:①当△ABC满足条件∠BAC=90°时,四边形AFBD是     形; ②当△ABC满足条件     时,四边形AFBD是正方形. 15.如图,在△ABC中,D是边BC的中点,点F,E分别在线段AD及其延长线上,DE=DF,连接BF,CF,BE,CE. (1)若BC=EF,求证:四边形BECF是矩形; (2)已知AB=5,BC=6. ①当AC的长为多少时,四边形BECF是菱形?并加以证明; ②请直接写出当AF的长为多少时,四边形BECF是正方形. 16.如图,正方形ABCO和正方形DEFO的顶点A,O,E在同一直线l上,且,AB=3,给出下列结论:①∠COD=45°;②AE=5;③CF⊥AD;④四边形ACDF的面积是8.5.其中正确的个数为(  ) A.1个 B.2个 C.3个 D.4个 17.如图,由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD和正方形EFGH,连接BE并延长交线段AD于点M,若∠AMB=2∠BAF,给出下面四个结论: ①M是AD的中点;②BF平分∠EBC;③. 上述结论中,所有正确结论的序号是(  ) A.①② B.①③ C.②③ D.①②③ 18.如图,正方形ABCD的边长为2,点E是CD的中点,HG垂直平分AE且分别交AE、BC于点H、G,则BG=   . 19.如图,在正方形ABCD中,点O是对角线AC,BD交点,过点O作射线OM,ON分别交BC,CD于点E,F,且∠EOF=90°,OC,EF交于点G.有下列 ... ...

~~ 您好,已阅读到文档的结尾了 ~~