ID: 23042726

第十二章 第5讲 电磁感应中的动量问题(课件 学案 练习,共3份)2026届高中物理一轮复习(人教版2019)

日期:2025-05-24 科目:物理 类型:高中试卷 查看:27次 大小:12507890B 来源:二一课件通
预览图 0
第十二,人教,复习,一轮,物理,高中
    第5讲 电磁感应中的动量问题(综合融通课) (一) 动量定理在电磁感应中的应用    导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解。 模型(一)———单棒+电阻”模型 情境示例1 水平放置的平行光滑导轨间距为L,左侧接有电阻R,导体棒的初速度为v0、质量为m、电阻不计,匀强磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来 求电荷量q -BLΔt=0-mv0,q=Δt= 求位移x -Δt=0-mv0,x=Δt= 应用技巧 初、末速度已知的非匀变速运动,在动量定理列出的式子中q=Δt,x=Δt;若已知q或x也可求末速度 情境示例2 间距为L的光滑平行导轨倾斜放置,倾角为θ,由静止释放质量为m、接入电路的阻值为R的导体棒,匀强磁场的磁感应强度为B,当通过横截面的电荷量为q或下滑位移为x时,速度达到v 求运动时间 -BLΔt+mgsin θ·Δt=mv-0, q=Δt,Δt= -Δt+mgsin θ·Δt=mv-0, x=Δt,Δt= 应用 技巧 用动量定理求时间需有其他恒力参与,若已知运动时间,也可求q、x、v中的一个物理量   [例1] (多选)如图甲所示,两根间距为L=1.0 m、电阻不计且足够长的光滑平行金属导轨与水平面夹角θ=30°,导轨底端接入一阻值为R=2.0 Ω的定值电阻,所在区域内存在磁感应强度为B的匀强磁场,磁场方向垂直于导轨平面向上,在导轨上垂直于导轨放置一质量为m=0.2 kg、电阻为r=1.0 Ω的金属杆,开始时使金属杆保持静止,某时刻开始给金属杆一个沿斜面向上F=2.0 N的恒力,金属杆由静止开始运动,图乙为运动过程的v t图像,重力加速度g取10 m/s2。则在金属杆向上运动的过程中,下列说法中正确的是 (  ) A.匀强磁场的磁感应强度B= T B.前2 s内通过电阻R的电荷量为1.4 C C.前2 s内金属杆通过的位移为4 m D.前4 s内电阻R产生的热量为6.2 J 听课记录: 模型(二)———电容器+棒”模型   基本模型 规律   导轨光滑,电阻阻值为R,电容器电容为C 电路特点 导体棒相当于电源,电容器充电 电流特点 安培力为阻力,棒减速,E减小,有I=,电容器充电UC变大,当BLv=UC时,I=0,F安=0,棒匀速运动 运动特点和 最终特征 棒做加速度a减小的减速运动,最终做匀速运动,此时I=0,但电容器带电荷量不为零 最终 速度 电容器增加的电荷量:q=CUC 最终电容器两端电压:UC=BLv 对棒应用动量定理: mv-mv0=-BL·Δt=-BLq v= v-t 图像 [例2] 如图所示,两条平行金属导轨的间距为L,长为d的倾斜部分与水平面的夹角为θ,水平部分足够长,两部分平滑相连,倾斜导轨上端接有一平行板电容器,电容为C。两部分导轨均处于匀强磁场中,磁场方向垂直于导轨平面向上,磁感应强度大小分别为2B和B,在倾斜导轨上端放置一质量为m的金属棒,使其沿导轨由静止开始加速下滑,当金属棒下滑距离d后无动能损失进入水平轨道,然后进入竖直向上的匀强磁场。已知金属棒在滑动过程中始终与导轨垂直且接触良好,电容器能正常工作,重力加速度为g,不计所有电阻和摩擦阻力。求: (1)金属棒刚进入水平导轨时速度的大小v0; (2)金属棒进入水平导轨后的最终速度v。 ( 答题区 ( 面答面评 , 拍照上传 , 现场纠错品优 ) ) (二) 动量守恒定律在电磁感应中的应用 1.问题特点:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便。 2.双棒模型(不计摩擦力) 双棒无外力 双棒有外力 示意图 F为恒力 运动 过程 导体棒1受安培力的作用做加速度减小的减速运动,导体棒2受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动 导体棒1做加速度逐渐减小的加速运动,导体棒2做加速度逐渐增大的加速运动,最终两棒以相同的加速度做匀加速直线运动 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~