ID: 23523527

第一章 4.4 诱导公式与旋转(课件 学案 练习)高中数学北师大版(2019)必修 第二册

日期:2026-02-12 科目:数学 类型:高中试卷 查看:33次 大小:3295884B 来源:二一课件通
预览图 0
第一章,第二,必修,2019,北师大,数学
    4.4 诱导公式与旋转(教学方式:深化学习课———梯度进阶式教学) [课时目标] 1.借助单位圆的对称性,利用三角函数的定义推导出诱导公式与旋转. 2.掌握诱导公式并能灵活运用,并能进行简单的三角函数式的化简、求值与证明. 1.诱导公式 sin(2kπ+α)=   (k∈Z) cos(2kπ+α)=   (k∈Z) sin(-α)=       cos(-α)=      sin(2π-α)=    cos(2π-α)=    sin(π-α)=      cos(π-α)=      sin(π+α)=      cos(π+α)=      sin=      cos=    sin=    cos=    2.诱导公式中角的关系 (1)对任意角α,α的终边与-α的终边关于直线   对称. (2)对任意角α,+α与-α的终边关于   对称,如图所示. |微|点|助|解| 1.“k·±α(k∈Z)”的诱导公式的口诀为“奇变偶不变,符号看象限”. 当k为偶数时,得α的同名函数值;当k为奇数时,得α的异名函数值,然后前面加一个把α看成锐角时原函数值的符号. 2.三角形中的诱导公式 在△ABC中,有以下结论. (1)sin(A+B)=sin(π-C)=sin C; (2)cos(A+B)=cos(π-C)=-cos C; (3)sin=sin=cos; (4)cos=cos=sin. 注意在三角形中,若sin A=sin B或cos A=cos B,均有A=B成立. 基础落实训练 1.判断正误(正确的打“√”,错误的打“×”) (1)cos=cos α. (  ) (2)sin=-cos α. (  ) (3)若cos 10°=a,则sin 100°=a. (  ) (4)若α为第二象限角,则sin=-cos α. (  ) 2.(多选)下列与sin θ的值不相等的是 (  ) A.sin(π+θ) B.sin C.cos D.cos 3.已知sin 25.3°=a,则cos 64.7°= (  ) A.a B.-a C.a2 D. 题型(一) 利用诱导公式求值 [例1] (1)sin 95°+cos 175°的值为 (  ) A.sin 5° B.cos 5° C.0 D.2sin 5° (2)已知sin=,则cos的值为    . 听课记录:   [变式拓展] 1.本例(2)中条件变为sin=,问题不变,如何求解 2.本例(2)条件不变,求cos的值. |思|维|建|模| 1.利用诱导公式化简、求值的策略 (1)已知角求值问题,关键是利用诱导公式把任意的三角函数值转化成锐角的三角函数值求解,转化过程中注意口诀“奇变偶不变,符号看象限”的应用. (2)对式子进行化简或求值时,要注意要求的角与已知角之间的关系,并结合诱导公式进行转化,特别要注意角的范围. 2.常见的特殊角 在条件求值问题中,当已知中的角与结论中的角不同时,要注意这两个角的和或差与,π,,2π之间的关系,若存在关系,可利用诱导公式整体代换. ①与有关的特殊角为与,与,与,与等. ②与π有关的特殊角为与等.   [针对训练] 1.已知cos=,则sin= (  ) A. B. C.- D.- 2.已知sin φ=,则cos+sin(3π-φ)的值为    . 题型(二) 利用诱导公式化简 [例2] 已知f(x)= . (1)化简f(x); (2)求f. 听课记录: |思|维|建|模| 三角函数式化简的策略 所谓化简,就是使表达式经过某种变形,使结果尽可能的简单,也就是项数尽可能的少,次数尽可能的低,函数的种类尽可能的少,分母中尽量不含三角函数符号,能求值的一定要求值. 利用诱导公式解决化简求值问题的关键是诱导公式的灵活选择,若加整数倍的π,则函数名称不变;若加二分之奇数倍的π,则函数名称改变.   [针对训练] 3.化简:··. 题型(三) 诱导公式的综合应用 [例3] 已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P. (1)求sin(α+π)的值; (2)若角β就是将角α的终边顺时针旋转得到,求5sin β-5cos β的值. 听课记录: |思|维|建|模| 诱导公式综合应用要“三看” 一看角 化大为小;②看角与角间的联系,可通过相加、相减分析两角的关系 二看函数名称 利用诱导公式化简变形,达到角的统一,以保证三角函数名最少 三看式子结构 通过分析式子,选择合适的方法,如分式可对分子分母同乘一个式子变形,平方和差、立方和差公式   [针对训练] 4.如图,在平 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~