课件编号2379519

5.4 平衡条件的应用 课件 (6)

日期:2024-06-27 科目:物理 类型:高中课件 查看:43次 大小:346466Byte 来源:二一课件通
预览图 1/9
平衡,条件,应用,课件
  • cover
课件22张PPT。1.整体法与隔离法:正确地确定研究对象或研究过程,分清内力和外力. 2.平行四边形定则和三角形定则;确定合矢量与分矢量的关系. 3.正交分解法:物体受多个力的平衡情况. 4.力的合成法. 特别适合三个力平衡时,运用其中两力之和等于三个力列方程求解.5.4《平衡条件的应用———求解平衡问题的常用方法及特例》5.图解法:常用于处理三个共点力的平衡问题,且其中一个力为恒力、一个力的方向不变情形. 6.相似三角形法 在共点力的平衡问题中,已知某力的大小及绳、杆等模型的长度、高度等,常用力的三角形与几何三角形相似的比例关系求解.7.正弦定理 如果物体受三个不平行力而处于平衡状态,如图2-4-1所示, 则 图2-4-1“动态平衡”是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”.【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是(  ) A.增大 B.先减小,后增大 C.减小 D.先增大,后减小图2-4-2 解析:方法一:对力的处理(求合力)采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法).作出力的平行四边形,如图甲所示.由图可看出,FBC先减小后增大. 方法二:对力的处理(求合力)采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将FAB、FBC分别沿水平方向和竖直方向分解,由两方向合力为零分别列出: FABcos 60°=FB Csin θ, FABsin 60°+FB Ccos θ=FB, 联立解得FBCsin(30°+θ)=FB/2, 显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大.         答案:B甲乙1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β <90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N的大小变化情况是(  )图2-4-3A.F逐渐增大,T逐渐减小,FN逐渐减小 B.F逐渐减小,T逐渐减小,FN逐渐增大 C.F逐渐增大,T先减小后增大,FN逐渐增大 D.F逐渐减小,T先减小后增大,FN逐渐减小 解析:利用矢量三角形法对球体进行分析如图甲所示,可知T是先减小后增大.斜面 对球的支持力FN′逐渐增大,对斜面受力分析如图乙所示,可知F=FN″sinθ,则F 逐渐增大,水平面对斜面的支持力FN=G+FN″·cos θ,故FN逐渐增大. 答案:C【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力FN的大小变化情况是(  ) A.FN先减小,后增大 B.FN始终不变 C.F先减小,后增大 D.F始终不变图2-4-4解析:取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力FN和悬挂重物的绳子的拉力(大小为G)的作用,将FN与G合成,其合力与F等值反向,如图所示,得到一个力的三角形(如图中画斜线部分),此力的三角形与几何三角形OBA相似,可利用相似三角形对应边成比例来解. 如图所示,力的三角形与几何三角形OBA相似,设AO高为H,BO长为L,绳长为l,则由对应边成比例可得   ,FN= G,F= G 式中G、H、L均不变,l逐渐变小,所以可知FN不变,F逐渐变小. 答案:B2 ... ...

~~ 您好,已阅读到文档的结尾了 ~~