ID: 2383906

2.2 对函数的进一步认识 教案

日期:2026-02-16 科目:数学 类型:高中教案 查看:21次 大小:26356B 来源:二一课件通
预览图 1/1
函数,进一步,认识,教案
  • cover
2.2对函数的进一步认识 教案 【教学目标】 1.掌握函数的三种主要表示方法 2.能选择恰当的方法表示具体问题中的函数关系 3.会画简单函数的图像 【教学重难点】 教学重难点:图像法、列表法、解析法表示函数 【教学过程】 一、复习引入: 1.函数的定义是什么?函数的图象的定义是什么? 2.在中学数学中,画函数图象的基本方法是什么? 3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征? 二、讲解新课:函数的表示方法 表示函数的方法,常用的有解析法、列表法和图象法三种. ⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式. 例如,s=60,A=,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的. 优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数. ⑵列表法:就是列出表格来表示两个变量的函数关系. 例如,学生的身高 单位:厘米 学号 1 2 3 4 5 6 7 8 9 身高 125 135 140 156 138 172 167 158 169 数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表 优点:不需要计算就可以直接看出与自变量的值相对应的函数值. ⑶图象法:就是用函数图象表示两个变量之间的关系. 例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的. 优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质. 三、例题讲解 例1某种笔记本每个5元,买 x{1,2,3,4}个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像 解:这个函数的定义域集合是{1,2,3,4},函数的解析式为 y=5x,x{1,2,3,4}. 它的图象由4个孤立点A (1, 5) B (2, 10) C (3, 15) D (4, 20)组成,如图所示 变式练习1 设 求f[g(x)]。 解: ∴ ∴ ∴ 例2作出函数的图象 列表描点: 变式练习2 画出函数y=∣x∣与函数y=∣x-2∣的图象 四、小结 本节课学习了以下内容:函数的表示方法及图像的作法 【板书设计】 函数的表示方法 典型例题 例1: 例2: 小结: 【作业布置】 课本第56习题2.2:1,2,3,4

~~ 您好,已阅读到文档的结尾了 ~~