ID: 23843373

13.3.1 三角形的内角(同步练习·含解析)-2025-2026学年人教版(2024)数学八年级上册

日期:2025-09-18 科目:数学 类型:初中试卷 查看:95次 大小:403646B 来源:二一课件通
预览图 1/5
13.3.1,八年级,数学,2024,人教,学年
  • cover
中小学教育资源及组卷应用平台 13.3.1 三角形的内角 一.选择题(共8小题) 1.(2025 武安市三模)如图,点O在直线l1上,点A,B在直线l2上,且∠AOB=90°,若∠1=39°,∠2=51°,则l1和l2的位置关系为(  ) A.相交 B.平行 C.垂直 D.均有可能 2.(2024秋 青阳县期末)若一个三角形的三个内角度数的比为2:3:4,则这个三角形是(  ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 3.(2025春 顺德区校级月考)适合条件∠A:∠B:∠C=2:3:5的△ABC是(  ) A.不等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形 4.(2025春 象州县期中)在一个直角三角形中,一个锐角是40°,另一个锐角是(  ) A.70° B.50° C.30° D.10° 5.(2025春 普陀区期末)已知△ABC是直角三角形,那么这个直角三角形三个内角的比可以是(  ) A.1:1:1 B.1:2:3 C.2:3:4 D.1:2:2 6.(2025 郑州模拟)如图,线段DG,EM,FN两两相交于B,C,A三点 则∠D+∠E+∠F+∠G+∠M+∠N的度数是(  ) A.180° B.360° C.540° D.720° 7.(2025春 三元区期中)一个三角形的两个内角分别是50°和70°,则第三个内角的度数是(  ) A.40° B.50° C.60° D.70° 8.(2025 缙云县二模)如图,△ABC和△DEF都是直角三角形,∠C=∠F=90°,∠B=45°,∠D=30°,点A在DE上.若DF∥AB,则∠CAD的度数为(  ) A.60° B.45° C.30° D.15° 二.填空题(共5小题) 9.(2025春 青白江区期末)如果一个三角形的两个内角都小于41°,那么这个三角形是    三角形.(填“锐角”、“直角”或“钝角”) 10.(2025 朝阳区校级一模)如图,AD是△ABC的角平分线,AE是△ABC的外角平分线,若∠DAC=20°,则∠EAC=    . 11.(2025春 郑州期中)在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为    . 12.(2025春 上海期末)在△ABC中,已知∠A:∠B:∠C=1:3:4,那么△ABC是     三角形(填“锐角”、“直角”或“钝角”). 13.(2025春 闵行区校级月考)在一个三角形中,如果一个内角是另一个内角的3倍,这样的三角形我们称之为“三倍角三角形”.根据上述定义,在△ABC中,∠A=35°,∠B=40°,△ABC     (填是或不是)三倍角三角形. 三.解答题(共2小题) 14.(2024秋 渭城区期末)如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC于点E,若∠B=42°,∠C=58°.求∠ADC及∠ADE的度数. 15.(2024秋 纳雍县期末)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知∠B=48°,∠BAC=72°,求∠CAD与∠DHE的度数. 13.3.1 三角形的内角 参考答案与试题解析 一.选择题(共8小题) 1.(2025 武安市三模)如图,点O在直线l1上,点A,B在直线l2上,且∠AOB=90°,若∠1=39°,∠2=51°,则l1和l2的位置关系为(  ) A.相交 B.平行 C.垂直 D.均有可能 【考点】三角形内角和定理;平行线的判定. 【专题】线段、角、相交线与平行线;推理能力. 【答案】B 【分析】首先根据对顶角的性质及三角形内角和定理,可得∠BAO=39°,再根据平行线的判定即可求得. 【解答】解:∵∠2=51°, ∴∠OBA=∠2=51°, ∵∠AOB=90°, ∴∠BAO=180°﹣∠AOB﹣∠OBA=180°﹣90°﹣51°=39°, ∴∠BAO=∠1=39°, ∴l1∥l2. 故选:B. 【点评】本题考查了三角形内角和定理,平行线的判定,关键是平行线判定定理的熟练掌握. 2.(2024秋 青阳县期末)若一个三角形的三个内角度数的比为2:3:4,则这个三角形是(  ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 【考点】三角形内角和定理. 【 ... ...

~~ 您好,已阅读到文档的结尾了 ~~