5 弹性碰撞和非弹性碰撞 [物理观念] 2.不变 减少 最大 [科学推理] m1v1+m2v2=(m1+m2)v m1+m2-(m1+m2)v2 例1 (1)0.1 m/s (2)0.135 J (3)0.7 m/s 0.8 m/s [解析] (1)取质量为300 g物体的初速度方向为正方向,由题意知m1=300 g=0.3 kg,m2=200 g=0.2 kg,v1=50 cm/s=0.5 m/s,v2=-100 cm/s=-1 m/s 设两物体碰撞后粘合在一起的共同速度为v 由动量守恒定律得m1v1+m2v2=(m1+m2)v 代入数据解得v=-0.1 m/s,负号表示方向与v1的方向相反 (2)在(1)的情况下,碰撞后两物体损失的动能为 ΔEk=m1+m2-(m1+m2)v2 代入数据解得ΔEk=0.135 J (3)如果碰撞是弹性碰撞,设碰后甲、乙两物体的速度分别为v1'、v2',由动量守恒定律得 m1v1+m2v2=m1v1'+m2v2' 由机械能守恒定律得 m1+m2=m1v1'2+m2v2'2 代入数据得v1'=-0.7 m/s,v2'=0.8 m/s,负号表示方向与v1方向相反 变式1 (1)2.9 m/s (2)非弹性碰撞 [解析] (1)设碰撞前保龄球的速度为v1,根据动量守恒定律有Mv1=Mv1'+mv2 解得v1=2.9 m/s (2)保龄球和球瓶组成的系统初、末动能分别为 Ek0=M=21.025 J Ek1=Mv1'2+m=16.75 J 因为Ek1,代入数据解得<,根据动量守恒定律得p1+p2=p1'+p2',解得p1'=2 kg·m/s,碰撞过程系统的总动能不增加,有+≤+,代入数据解得≤,碰撞后甲的速度不大于乙的速度,有≤,代入数据解得≥,所以≤≤,故A、B正确,C、D错误. 例4 B [解析] 如果两个小球发生的是完全非弹性碰撞,则有mv=(m+3m)v共,解得v共=,如果两个小球发生的是弹性碰撞,则有mv=mvA+3mvB,mv2=m+×3m,解得vA=-,vB=,故A错误,B正确;A球和B球所受最大冲量相等,根据动量定理有I=3m×=,故C、D错误. 素养提升 示例 CD [解析] 发生弹性碰撞时,根据动量守恒定律及机械能守恒定律有mAv1+mBv2=mAvA+mBvB,mA+mB=mA+mB,得vA=4 m/s ,vB=9 m/s,A球对B球的冲量为I=mBvB-mBv2=6 N·s,A错误;若发生完全非弹性碰撞,则有mAv1+mBv2=(mA+mB)v,得v=7 m/s,则碰撞后A球的速度在4 m/s到7 m/s之间,完全非弹性碰撞的机械能损失最大为ΔE=mA+mB-(mA+mB)v2=7.5 J,B错误,C正确;当两球发生的碰撞是完全非弹性碰撞时,A球对B球的冲量为I'=mBv-mBv2=3 N·s,D正确. 变式4 A [解析] 根据题意,设碰前两小球的速度大小为v,碰后小球乙的速度大小为v'.由动量守恒定律有3mv-mv=0+mv',所以v'=2v,碰前总动能Ek=×3mv2+mv2=2mv2,碰后总动能Ek'=mv'2=2mv2,则有Ek=Ek',即两小球发生的碰撞为弹性碰撞,故选A. 随堂巩固 1.C [解析] 设碰前A球的速度为v0,根据动量守恒定律有mv0=2mv,则压缩最紧(A、B有相同速度)时的速度v=,由系统机械能守恒得m=×2m×+Ep,解得v0=2,故选C. 2.AC [解析] 物体的动量p=,已知两物体动能Ek相等,又知m1
~~ 您好,已阅读到文档的结尾了 ~~