ID: 23904054

6.3 哪个团队收益大 课件(共12张PPT) 2025-2026学年北师大版八年级数学上册

日期:2025-09-23 科目:数学 类型:初中课件 查看:64次 大小:590173B 来源:二一课件通
预览图 1/6
数学,八年级,北师大,学年,2025-2026,PPT
  • cover
(课件网) 6.3 哪个团队收益大 1.掌握平均数、方差、四分位数和箱线图的概念及计算方法。 (重点) 2.理解不同统计方法在数据分析中的作用。 3.能够运用平均数、方差、四分位数和箱线图对数据进行分析。 (难点) 某银行有A 和B 两个理财经营团队。2018—2020年,这两个理财团队分别负责经营12 项理财产品,收益率(单位:%)如下。 A: 4.77 3.98 6.44 4.89 2.15 3.85 3.64 3.21 3.18 2.02 4.11 4.10 B: 3.18 3.84 3.99 3.67 3.40 3.60 4.10 4.21 4.15 4.44 3.87 3.91 问题1:如何评价两个团队的经营水平? 问题2:除了平均数,还有哪些统计方法可以帮助我们分析数据? 方法一:平均数与方差的分析 小明利用平均数、方差进行分析: A=3.861 7,B=3.863 3,可以看出 B团队的平均收益率略高; s2A=1.326 9,s2B=0.116 5,可以看出 B团队收益率的波动较小。 通过分析可以看出,B团队要比A团队经营得略好一些,且更为稳健。 方法二 四分位数与箱线图的分析 小颖利用四分位数、箱线图进行分析: 团队 最小值、四分位数和最大值 最小值 m25 m50 m75 最大值 A 2.02 3.195 3.915 4.440 6.44 B 3.18 3.635 3.890 4.125 4.44 基于四分位数或箱线图,可以发现A团队收益率的中位数与B团队的相差不大,但A团队的收益率明显比B 团队的波动大。两个团队经营效益基本一样,但B 团队的经营水平比 A 团队要平稳。 在某次知识竞赛中,八(1)班每名学生的得分如下: 77 76 73 87 81 88 76 83 84 80 52 82 83 66 83 82 72 86 76 79 82 66 66 79 89 78 75 72 82 84 80 88 74 79 74 78 66 84 80 33 79 80 81 81 八(2)班每名学生的得分如下: 83 85 82 91 83 91 87 81 86 79 78 80 83 95 76 30 95 83 71 78 81 87 84 78 80 80 80 74 76 71 51 81 64 77 82 86 82 81 81 79 89 74 89 82 请你利用所学的统计知识对这两个班的得分情况进行分析 和评价,并与同伴进行交流。 解:平均水平:八 (2) 班的平均得分(79.7)高于八 (1) 班的(77.8),说明八 (2) 班整体成绩更好。 中间水平:八 (2) 班中位数81高于八 (1) 班的79,意味着八 (2) 班一半以上学生成绩较好。 数据集中趋势:八 (1) 班众数为79和82,八 (2) 班众数为81和83,八 (2) 班众数相对更高,成绩集中在较高分数段。 数据离散程度:从箱线图看,八(1)班数据更分散,有较低的异常值拉低整体水平;八 (2) 班数据更集中,成绩相对稳定。 综上,八 (2) 班在此次知识竞赛中的表现优于八 (1) 班,八 (1) 班需关注成绩较低的学生,提升整体水平。 1.若一组数据的平均数、中位数、众数都相等,则这组数据可能是( ) A. 1,2,3,4,5 B. 1,2,2,2,3 C. 1,1,1,2,2 D. 1,1,2,2,3 B 3.某次考试分数的第90百分位数是95分,说明至少有 %的 学生分数不超过95分。 2.数据集{12, 15, 18, 22, 24, 27, 30}的下四分位数是 ,上四分位数是 。 90 15 27 4.某小组 8 名学生的数学成绩分别为 75,80,85,90,90,95,100,100。 (1) 求这组数据的平均数、中位数、众数; (2) 计算第 75 百分位数。 解:(1) 平均数: (75 + 80 + 85 + 90 + 90 + 95 + 100 + 100)÷8 = 90; 将数据从小到大排序为 75,80,85,90,90,95,100,100,中位数为(90 + 90)÷2 = 90;众数是 90 和 100。 (2)8×75% = 6,第 75 百分位数是第 6 个数和第 7 个数的平均值,即(95 + 100)÷2 = 97.5 。 平均数 数据分析的应用 众数 箱线图 中位数、百分位数 ... ...

~~ 您好,已阅读到文档的结尾了 ~~