ID: 23951155

初中数学人教版八年级上册综合与实践 课题学习:最短路径问题 教学设计

日期:2025-09-25 科目:数学 类型:初中教案 查看:39次 大小:134144B 来源:二一课件通
预览图 1/5
初中,数学,人教,八年级,上册,综合
  • cover
《课题学习:最短路径问题》教学设计 一、课程标准解读及地位作用 (1)课程标准解读:《课题学习:最短路径问题》属于综合与实践这一部分,这节课就是综合运用所学的数学思想、方法、知识、技能解决一些生活和社会中的问题,以实际生活中的问题为载体,以学生自主参与为主的学习活动,是培养学生应用意识、创新意识、过程经验很重要的载体,通过课题学习能够把知识系统化,解决一些实际问题。针对问题情境,学生借助所学知识和生活经验独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。这种类型的课程应该“少而精”的原则,保证每学期至少一次,可以在课堂上完成,也可以将课内外结合. (2)地位及作用:《课题学习:最短路径问题》位于人教版八年级上第十三章《轴对称》,为让学生能灵活的运用两点之间线段最短、合理使用轴对称、平移等解决最短路径问题而设置的一节课。本节课是在学习轴对称、等腰三角形的基础上,引导学生探究如何利用线段公理解决最短路径问题。它既是轴对称、平移、等腰三角形知识运用的延续,又能培养学生自主探究,学会思考,在知识与能力转化上起到桥梁作用. 二、教学内容和内容解析 1、内容:利用轴对称研究某些最短路径问题. 2、内容解析:最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等进行变换进行研究. 这节课我以数学史中的一个经典问题--将军饮马问题为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小值问题,再利用轴对称将线段和最小值问题转化为“两点之间,线段最短”问题。基于以上分析,确定本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 三、目标和目标解析 1、目标:能利用轴对称能利用轴对称和平移变换解决简单 的最短路径问题,体会图形的变化在解决最值问题中的 作用,感悟转化思想. 2、目标解析:达成目标的标志是:学生能将实际问题中的 “地点”“河”抽象为数学中的“点”“线”,经历将实际 问题抽象为数学的线段和最小值问题的过程;能利用 轴对称将线段和最小问题转化为“两点之间,线段最 短”问题;能通过逻辑推理证明所求距离最短;在探 索最短路径的过程中,体会轴对称“桥梁“的作用, 感悟转化思想. 四、教学问题诊断分析 最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。解答“当点A、B在直线L的同侧时,如何在L上找到点C,使AC与CB的和最小“,需要将其转化为”直线L异侧的两点,与L上的点的线段和最小“的问题,为什么需要这样的转化、怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难,在证明”最短“时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求线段和,这种思路和方法,一些学生想不到。教学时,教师可以让学生首先思考”直线L异侧的两点,与L上的点的线段和最小“,为学生搭建”脚手架“,在证明”最短“时,教师要适时点拔学生,让学生体会”任意“的作用。本节课教学难点是:如何利用轴对称将最短路径问题转化为线段和最小值问题. 五、教学目标 1能利用轴对称和平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想. 2通过教师启发引导、合作探究,培养学生运用数学知识解决实际问题的应 ... ...

~~ 您好,已阅读到文档的结尾了 ~~