首页
高中数学课件、教案、试卷中心
用户登录
资料
搜索
ID: 23962422
【学霸笔记】周测5 二次函数与一元二次方程、不等式(教师版)人教A版(2019)数学必修第一册--高中同步周周测
日期:2025-09-26
科目:数学
类型:高中试卷
查看:57次
大小:31516B
来源:二一课件通
预览图
1/3
张
同步
,
高中
,
一册
,
必修
,
数学
,
2019
周测5 二次函数与一元二次方程、不等式 (时间:75分钟 分值:100分) 一、单项选择题(本题共6小题,每小题5分,共30分) 1.不等式≥0的解集是( ) A. B. C. D. 答案 B 解析 由不等式≥0, 得(2x-1)(x+4)≥0且x+4≠0, 解得x<-4或x≥. 2.已知条件p:x>1,条件q:-x2-2x+3≤0,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A 解析 由题意条件p:x>1,条件q:-x2-2x+3≤0 x≤-3或x≥1,所以p是q的充分不必要条件. 3.某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为P=160-2x,生产x件所需成本为C(元),其中C=(500+30x)元,若要求每天获利不少于1 300元,则日销售量x的取值范围是( ) A.{x|20≤x≤30,x∈N*} B.{x|20≤x≤45,x∈N*} C.{x|15≤x≤30,x∈N*} D.{x|15≤x≤45,x∈N*} 答案 B 解析 设该厂每天获得的利润为y元, 则y=(160-2x)·x-(500+30x)=-2x2+130x-500,0
0,y>0且+=1,若2x+y
9} B.{m|m≤-1或m≥9} C.{m|-9
0,y>0,且+=1, 所以2x+y=(2x+y)=5++≥5+2=9, 当且仅当=且+=1,即x=y=3时取等号,此时2x+y取得最小值9, 若2x+y
9或m<-1. 6.若关于x的不等式x2-(a+1)x+a<0的解中恰有3个整数,则实数a的取值范围是( ) A.4
1时,由1
0 答案 AC 解析 对于A,x2+6x+9=(x+3)2≤0,解得x=-3,故解集为{-3},不是空集,满足题意; 对于B,x2-3x+3=+≥,故x2-3x+3<0的解集为空集,不满足题意; 对于C,Δ=4a2-4(a2-1)=4>0,故解集不是空集,满足题意; 对于D,-x2-2x-1=-(x+1)2≤0,故-x2-2x-1>0的解集为空集,不满足题意. 8.对于给定的实数a,关于实数x的一元二次不等式(x-a)(x-2)<0的解集可能为( ) A.{x|x<2或x>a} B.{x|x
2} C.{x|a
2时,此时解集为{x|2
0的解集是{x|x1
4 D.x1x2+3<0 答案 AB 解析 由题意可得a<0,a(x-1)(x+3)-2=a(x-x1)(x-x2), 即ax2+2ax-3a-2=ax2-a(x1+x2)x+ax1x2, 则即x1+x2+2=0,x1x2+3=->0,故A正确,D错误; 令a(x-1)(x+3)=0,其根为x3=-3,x4=1, 结合二次函数性质可得-3
0, ∴二次函数y=ax2+bx+c有2个零点. 11.若对任意实数x,都有意义,则实数k的取值范围是 . 答案 {k|0≤k≤8} 解析 因为y=的定义域为R, 即kx2-kx+2≥0恒 ... ...
~~ 您好,已阅读到文档的结尾了 ~~
立即下载
免费下载
(校网通专属)
登录下载Word版课件
同类资源
【学霸笔记】周测11 单元检测卷(三)(教师版)人教A版(2019)数学必修第一册--高中同步周周测(2025-09-24)
【学霸笔记】周测10 函数图象和性质的综合应用(教师版)人教A版(2019)数学必修第一册--高中同步周周测(2025-09-24)
【学霸笔记】周测12 阶段滚动卷(一)(教师版)人教A版(2019)数学必修第一册--高中同步周周测(2025-09-24)
【学霸笔记】周测9 幂函数及函数的应用(一)(教师版)人教A版(2019)数学必修第一册--高中同步周周测(2025-09-24)
【学霸笔记】周测8 函数的基本性质(教师版)人教A版(2019)数学必修第一册--高中同步周周测(2025-09-24)
上传课件兼职赚钱