ID: 24005686

4.1成比例线段 同步练(含答案) 2025-2026学年数学北师大版九年级上册

日期:2025-12-06 科目:数学 类型:初中试卷 查看:92次 大小:268161B 来源:二一课件通
预览图 0
成比例,线段,同步,答案,2025-2026,学年
    1 成比例线段 第1课时 成比例线段和比例的 基本性质 学用P 1.若3a=5b(a,b均不为0),则下列式子正确的是 ( B ) A.= B.= C.= D.= 2.下列各组线段中,是成比例线段的是 ( C ) A.4 cm,5 cm,6 cm,7 cm B.3 cm,4 cm,5 cm,8 cm C.3 cm,5 cm,9 cm,15 cm D.1 cm,3 cm,4 cm,8 cm 3.等边三角形的一边与这边上的高的比是 ( D ) A.∶2 B.∶1 C.1∶ D.2∶ 4.已知a,b,c,d是成比例线段,其中a=1 cm,b=2 cm,c=3 cm,则线段d= 6 cm. 5.某市两旅游景区之间的距离为105 km,在一张比例尺为1∶2 000 000的交通旅游地图上,它们之间的距离为 5.25  cm. 6.已知三个数1,2,,请你再添上一个数,使它们能构成一个比例式,则这个数是 2(答案不唯一) .(只填一个即可) 7.(1)(2025·重庆一中)已知=,求的值; 解:设x=k,则y=2k(k≠0), 则==. (2)已知=2,求的值; 解:∵=2,∴a=4b, ∴==. (3)已知x∶y=2∶5,x∶z=∶,求x∶y∶z. 解:∵x∶y=2∶5,x∶z=∶=3∶4, ∴x∶y=6∶15,x∶z=6∶8, ∴x∶y∶z=6∶15∶8. 学用P 8.若a∶b=3∶4,且a+b=14,则2a-b的值是 ( A ) A.4 B.2 C.6 D.14 9.如图,在梯形ABCD中,AD∥BC,AB=AD=CD=6,AM是梯形的高,∠B=60°,则下列结论: (第9题) ①=;   ②=; ③=;   ④=. 其中正确的有 ①②③④ .(填序号) 10.已知3x-4y=0(x≠0,y≠0),则等于  . 11.如图,已知△ABC中,=,且AB=6,AC=4,BC=5,求CD和BD的长. (第11题) 解:∵=, ∴=. ∵AB=6,AC=4,BC=5, ∴=,解得CD=2, ∴BD=BC-CD=5-2=3. (敢于挑战,突破自我)学用P 12.已知线段AB=10,点C是直线AB上一点,点D为线段AC的中点,=,且m,n满足+5(m+2n-7)2=0,则线段BD的长为 8或20 . 13.在△ABC中,AB=12,点E在AC上,点D在AB上.若AE=6,EC=4,且= . (1)求AD的长; (2)请问=成立吗 请说明理由. 解:(1)∵AE=6,EC=4, ∴==. 设AD=3x,DB=2x. 由AD+DB=AB,得5x=12, 解得x=2.4,∴AD=7.2. (2)成立.理由如下: 由(1)可得,DB=4.8,则==. ∵AC=AE+EC=10, ∴==, ∴=. 第2课时 比例的等比性质 学用P 1.已知=,则的值为 ( C ) A. B. C. D. 2.已知==≠0,则的值为 ( A ) A. B. C.2 D. 3.已知=(其中b>0,d>0),则下列各式不一定成立的是 ( B ) A.= B.= C.= D.= 4.若a∶b∶c=1∶3∶5,则= - . 5.(1)若==(m+p≠0),则=  ; (2)若=,则=  . 6.(1)(2025·重庆大渡口区)已知===,b+d+f=3,则a+c+e的值是  ; (2)(2025·重庆南开)若===且b-5d+7f≠0,则的值为  . 7.已知线段x,y,z满足==(x,y,z均不为0). (1)求的值; (2)若线段x,y,z还满足x+y+z=54,求x,y,z的值. 解:(1)∵=,∴=, ∴=+1=. (2)设===k(k≠0), 则x=2k,y=3k,z=4k. ∵x+y+z=54, ∴2k+3k+4k=54,解得k=6, ∴x=12,y=18,z=24. 学用P 8.设a,b,c是三个互不相等的正数,如果==,那么 ( A ) A.3b=2c B.3a=2b C.2b=c D.2a=b 9.已知a+b+c≠0,且===p,则直线y=px+p不经过第 四 象限. 10.设a,b,c是△ABC的三条边,且==.判断△ABC为何种三角形,并说明理由. 解:△ABC为等边三角形.理由如下: ∵a,b,c是△ABC的三条边, ∴a+b+c≠0. ∵==, ∴====0, ∴a-b=0,b-c=0,c-a=0, ∴a=b=c, ∴△ABC为等边三角形. 11.【教材改编】如图,在△ABC中,AB=12 cm,AE=6 cm,EC=4 cm,且=. (第11题) (1)求AD的长; (2)求证:=. (1)解:设AD=x cm, 则BD=AB-AD=(12-x)cm. ∵=, ∴=,解得x=7.2, 经检验,x=7.2是原分式方程的解, ∴AD=7.2 cm. (2)证明:∵=, ∴=, 即=. ∴=. (敢于挑战,突破自我)学用P 12.如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D,E,BC=AC,则+= 5 . (第12题) 13.我们知道:若=,且b+d≠0,那么==. (1)若b+d=0,则a,c满足什么关系 (2)若===t,求t2-t-2的值. 解:(1)∵b+d=0,∴d=-b, ∴==, ∴a=-c,即a+c=0. (2)①当a+b+c≠0时, ===t==2, ∴t2-t-2=22-2-2=0; ②当a+b+c=0时, b+c=-a,a+c=-b,a+b=- ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~