ID: 24332688

5.2 统计的简单应用(教学课件)湘教版2025-2026学年九年级数学上册

日期:2025-11-14 科目:数学 类型:初中课件 查看:29次 大小:3848611B 来源:二一课件通
预览图 1/12
统计,简单,应用,教学课件,教版,2025-2026
  • cover
(课件网) 幻灯片 1:封面 标题:5.2 统计的简单应用 副标题:用统计方法解决实际问题 姓名:[教师姓名] 日期:[授课日期] 幻灯片 2:情境引入 生活中的统计:超市通过统计不同商品的销量来调整进货量;学校通过统计学生成绩来分析教学效果;企业通过统计客户反馈来改进产品。统计在生活、生产、科研等领域有着广泛的应用。 学习目标:了解统计应用的基本步骤,能运用统计图表整理和展示数据,会用样本估计总体的思想解决实际问题,培养数据分析能力。 幻灯片 3:统计应用的基本步骤 步骤梳理: 明确问题:确定统计研究的目的和需要解决的问题(如 “哪种品牌的饮料更受欢迎”“学生的体育锻炼时间是否充足”)。 收集数据:根据问题设计合理的调查方案,通过普查、抽样调查等方式收集数据(注意样本的代表性)。 整理数据:对收集到的数据进行分类、排序、分组,制成表格(如频数分布表)。 展示数据:用统计图表(条形图、扇形图、折线图等)直观展示数据特征。 分析数据:计算相关统计量(平均数、方差、频数、频率等),分析数据背后的规律。 得出结论:根据分析结果回答问题,为决策提供依据。 幻灯片 4:数据的收集与整理 数据收集方法: 普查:对总体中的每一个个体都进行调查(如人口普查),优点是结果准确,缺点是耗时、耗力、成本高。 抽样调查:从总体中抽取部分个体进行调查,优点是高效、经济,缺点是结果为估计值,需保证样本代表性。 数据整理工具: 频数分布表:将数据按区间分组,记录每组的频数(出现次数)和频率(频数与总数的比)。 示例:某班 50 名学生的数学成绩频数分布表(分组:60 以下、60 - 70、70 - 80、80 - 90、90 - 100)。 幻灯片 5:数据的展示 ——— 统计图表 条形图:用长方形的高度表示各类别的频数或频率,适用于比较不同类别的数据大小。 (示例:不同品牌饮料的销量条形图) 扇形图:用圆的扇形面积表示各类别的频率,适用于展示各部分占总体的比例关系。 (示例:学生课外活动时间分布扇形图) 折线图:用折线连接数据点,适用于展示数据随时间或顺序的变化趋势。 (示例:某城市近 5 年空气质量优良天数折线图) 选择原则:根据数据类型和分析目的选择合适的图表,使数据特征更直观。 幻灯片 6:例题讲解 1 - 统计图表的应用 题目:某学校为了解学生的课外阅读情况,随机抽取 50 名学生进行调查,得到每周课外阅读时间(单位:小时)的数据如下:\(2, 3, 1, 4, 2, 5, 3, 2, 4, 3, 1, 2, 3, 5, 4, 2, 3, 6, 2, 4,\)\(3, 5, 2, 1, 3, 4, 2, 3, 5, 3, 2, 4, 1, 3, 2, 5, 3, 4, 2, 3,\)\(6, 2, 4, 3, 5, 2, 3, 4, 2, 3\) 整理数据,制作频数分布表(分组:1 - 2,3 - 4,5 - 6)。 绘制条形图展示各组频数。 估计该校学生每周课外阅读时间的平均水平。 解答步骤: 频数分布表: 分组(小时) 频数 频率 1 - 2 18 0.36 3 - 4 22 0.44 5 - 6 10 0.20 条形图:横轴为分组,纵轴为频数,绘制对应高度的长方形。 估计平均水平:计算样本平均数(取每组中点值估算):\( \bar{x} = \frac{1.5 18 + 3.5 22 + 5.5 10}{50} = \frac{27 + 77 + 55}{50} = 3.18 ° \) 估计该校学生每周课外阅读时间平均约为 3.2 小时。 幻灯片 7:用样本估计总体的应用 核心思想:在统计应用中,当总体容量较大时,通过样本的统计量(如平均数、频率)估计总体的相应特征,为决策提供参考。 常见场景: 用样本中某类别的频率估计总体中该类别的比例(如产品合格率、民意支持率)。 用样本平均数估计总体平均数(如平均身高、平均收入)。 用样本方差估计总体方差(如产品尺寸稳定性、成绩波动程度)。 幻灯片 8:例题讲解 2 - 用样本频率估计总体比例 ... ...

~~ 您好,已阅读到文档的结尾了 ~~