(
课件网) 2.2.1 直线的点斜式方程 2025-2026学年人教版高中数学选择性必修一教学课件★★ 给定一点和一个方向可以唯一确定一条直线, 即在平面直角坐标系中给定一个点P0(x0, y0)和斜率k就能唯一确定一条直线, 即直线上任意一点P的坐标(x, y)与点P0的坐标(x0, y0)和斜率k之间的关系是确定的,那么这一关系如何表示呢? 由上述推导过程可知: ①直线l上每个点的坐标(x, y)都满足关系式y-y0=k(x-x0); ②坐标满足关系式y-y0=k(x-x0)的每个点都在直线l上;(见P59-60) 1.直线的点斜式方程 基础巩固:点斜式方程 P61-1.写出下列直线的点斜式方程: (1)经过点A(3,-1),斜率是; (2)经过点B(,2),倾斜角是30°; (3)经过点C(0,3),倾斜角是0°; (4)经过点D(-4,-2),倾斜角是. (5)过P(-2,3),Q(5,-4)两点. 2.直线的斜截式方程 纵截距可正可负可为0 巩固练习 练习1.若直线:y=-x+2a与直线:y=(a2-2)x+2平行,求实数a的值; 练习2.已知直线l的斜率为,且直线l与两坐标轴围成的三角形面积为6, 求直线l的方程; 巩固练习 练习3.在△ABC中,已知A(0,0),B(3,1),C(1,3). (1)求AB边上的高所在直线的方程; (2)求AB边上的中垂线所在直线的方程; (3)求过点A与BC平行的直线方程. 巩固练习 练习4.已知直线l的过点(4,3),且横截距和纵截距相等,求直线l的方程; [变式1]已知直线l的过点(4,3),且横截距和纵截距互为相反数,求直线l的方程; [变式2]过点(2,5)且在两坐标轴上的截距绝对值相等的直线有___条。 过点(2,2)且在两坐标轴上的截距绝对值相等的直线有___条。 3 2 涉及“截距”问题,则一定要注意考虑“零截距”的情况. 2.2.2 直线的两点式方程 选择性必修第一册 第二章《直线和圆的方程》 给定两点可以唯一确定一条直线,那么直线上任意一点P的坐标(x, y)与点P1(x1, y1)和点P2(x2, y2)之间的关系式是什么? 引例.经过两点(﹣1,2),(﹣3,﹣4)的直线的方程是_____. 3.直线的两点式方程 减数相同 分母为常数 练习1.在△ABC中,已知A(-5,0),B(3,-3),C(1,1),求BC边上的中线所在直线的方程. 4.直线的截距式方程 巩固练习:直线的截距式方程 练习5.过点(0,5),且在两坐标轴上的截距之和是2的直线l的方程是_____. 过点(5,0),且在两坐标轴上的截距之差是2的直线l的方程是_____. 巩固练习:直线的截距式方程 练习6.已知直线l过点(-3,4),且在两坐标轴上的截距之和是12,求直线l的方程. 解:由题意得,直线l在两坐标轴上的截距都存在且不为0, [变式]已知直线l过点(1,2),且与两坐标轴的正半轴围成的三角形的面积是4, 求直线l的方程. 综合应用 对称思想(一般找对称点) 练习7.一条光线从点A(3,2)发出,经x轴反射,通过点B(-1,6), 求入射光线和反射光线所在直线的方程. 【小结】直线方程的选择技巧 (1)已知一点的坐标,求过该点的直线方程,一般选取点斜式方程,再由其他条件确定直线的斜率. (2)若已知直线的斜率,一般选用直线的斜截式,再由其他条件确定直线的一个点或者截距. (3)若已知两点坐标,一般选用直线的点斜式或两点式方程,若两点是与坐标轴的交点,就用截距式方程. (4)不论选用怎样的直线方程,都要注意各自方程的限制条件,对特殊情况下的直线要单独讨论解决. 2.2.3 直线的一般式方程 选择性必修第一册 第二章《直线和圆的方程》 观察我们已经学习的直线的四个方程,点斜式y-y0=k(x-x0),斜截式y=kx+b, 两点式=,截距式+=1,你能发现它们都是什么类型的方程? 都是关于x,y的二元一次方程 【思考1】平面直角坐标系中的任意一条直线都可以用一个关于x,y的二元一次方程表示吗? 【分析】任意一条直线l,在其上任取一点P0(x0,y0), 当直线l的斜 ... ...