
第十六章整式的乘法期末复习单元检测卷人教版2025—2026学年八年级上册 总分:120分 时间:90分钟 姓名:_____ 班级:_____成绩:_____ 一.单项选择题(每小题5分,满分40分) 题号 1 2 3 4 5 6 7 8 答案 1.下列各式计算正确的是( ) A. B. C. D. 2.若,则的值为( ) A.7 B.-7 C. D. 3.如果多项式是一个完全平方式,则的值是( ) A.5 B.1 C.1或 D.1或9 4.如图,从边长为的大正方形中剪去一个边长为的小正方形,再将剩下的阴影部分剪开,拼成如图所示的长方形.根据图形的变化过程可以验证等式( ) A. B. C. D. 5.已知,则用含、的式子可表示为( ) A. B. C. D. 6.已知,,则( ) A.3 B.5 C.7 D.9 7.下列乘法中,不能运用平方差公式进行运算的是( ) A. B. C. D. 8.有两个正方形A、B,现将B放在A的内部得图甲,将A,B重新放置后,构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为和,现将三个正方形A和两个正方形B,按如图丙摆放,则阴影部分的面积为( ) A. B. C. D. 二.填空题(每小题5分,满分20分) 9.若,则的值是 . 10.已知,,则 . 11.已知多项式.若,则A的值为 . 12.已知非零实数满足,,则 . 三.解答题(共6小题,总分60分,每题须有必要的文字说明和解答过程) 13.先化简,再求值:,其中,. 14.关于的代数式化简后不含项和常数项. (1)求、的值; (2)求的值. 15.已知,,. (1)求的值; (2)写出,,之间的数量关系. 16.某校的一个数学兴趣小组参加了学校科技节比赛,制作了航天火箭模型.为了向全校同学宣传自己的科技作品,制作了如下图所示的宣传版画,它由一个三角形和两个梯形组成,已知宣传版画(阴影部分)的尺寸如图所示. (1)用含a,b的代数式表示图中宣传版画的总面积(结果需化简). (2)若,,求宣传版画的总面积. 17.所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使,则称整式A是完全平方式.例如:,,所以,都是完全平方式. 请根据上述材料解决下列问题: (1)已知,,则_____. (2)如果是一个完全平方式,求t的值. (3)若m满足,求的值. 18.数形结合是解决数学问题的重要思想方法,通过计算几何图形的面积可以验证一些代数恒等式.如图①是一个大正方形被分割成了边长分别为a和b的两个小正方形和长宽分别为a和b的两个长方形,利用这个图形可以验证公式. 利用上述公式解决问题: (1)①若,,则_____, ②若,求的值; (2)如图②,在线段上取一点D,分别以,为边作正方形、,连接、、.若的长为10,的面积为11,求阴影部分的面积和. 参考答案 一、选择题 1.D 2.C 3.C 4.D 5.C 6.A 7.B 8.A 二、填空题 9. 10.48 11.2 12. 三、解答题 13.【解】解: , 当,时,原式 14.【解】(1)解: , ∵化简后不含 项和常数项, ∴,, ∴,; (2)解:, 由(1)知,, ∴, 原式. 15.【解】(1)解:∵,, 又∵, ∴ . (2)解:∵, 又, ∴, ∴. 16.【解】(1)解:(1)由图可得, 宣传版画的总面积为 . (2)解:,, , ∴宣传版画的总面积为 . 17.【解】(1)解:, . , , 解得:. 故答案为:. (2)解:是一个完全平方式, 即是一个完全平方式, 或, 解得或, 即的值为或. (3)解:, 而, , , . 18.【解】(1)解:①; ② 类比①可得, ; (2)解:设正方形边长为m,正方形的边长为n, 由题意可知,,,即, 两个正方形的面积之和为, 空白面积为, ∴阴影部分的面积和为. ... ...
~~ 您好,已阅读到文档的结尾了 ~~