课件编号6022789

高中数学必修一知识讲解,巩固练习(复习补习,期末复习资料):09【提高】函数的单调性

日期:2024-06-13 科目:数学 类型:高中学案 查看:42次 大小:761133Byte 来源:二一课件通
预览图 1/3
高中,单调性,函数,提高,期末,复习资料
  • cover
单调性与最大(小)值(B层) 【学习目标】 1.理解函数的单调性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性. 【要点梳理】 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A,区间 如果对于内的任意两个自变量的值x1、x2,当x1f(x2),那么就说f(x)在区间上是减函数. 要点诠释: (1)属于定义域A内某个区间上; (2)任意两个自变量且; (3)都有; (4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间上是增函数或减函数,那么就说函数f(x)在区间上具有单调性,称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系--单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 3.函数的最大(小)值 一般地,设函数的定义域为,如果存在实数满足: ①对于任意的,都有(或); ②存在,使得,那么,我们称是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量,使等于最值; ②对于定义域内的任意元素,都有(或),“任意”两字不可省; ③使函数取得最值的自变量的值有时可能不止一个; ④函数在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标. 4.证明函数单调性的步骤 (1)取值.设是定义域内一个区间上的任意两个量,且; (2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; (3)定号.判断差的正负或商与1的大小关系; (4)得出结论. 5.函数单调性的判断方法 (1)定义法; (2)图象法; (3)对于复合函数,若在区间上是单调函数,则在区间或者上是单调函数;若与单调性相同(同时为增或同时为减),则为增函数;若与单调性相反,则为减函数. 要点二、基本初等函数的单调性 1.正比例函数 当k>0时,函数在定义域R是增函数;当k<0时,函数在定义域R是减函数. 2.一次函数 当k>0时,函数在定义域R是增函数;当k<0时,函数在定义域R是减函数. 3.反比例函数 当时,函数的单调递减区间是,不存在单调增区间; 当时,函数的单调递增区间是,不存在单调减区间. 4.二次函数 若a>0,在区间,函数是减函数;在区间,函数是增函数; 若a<0,在区间,函数是增函数;在区间,函数是减函数. 要点三、一些常见结论 (1)若是增函数,则为减函数;若是减函数,则为增函数; (2)若和均为增(或减)函数,则在和的公共定义域上为增(或减)函数; (3)若且为增函数,则函数为增函数,为减函数; 若且为减函数,则函数为减函数,为增函数. 【典型例题】 类型一、函数的单调性的证明 例1.已知:函数 (1)讨论的单调性. (2)试作出的图像. 【思路点拨】本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 【解析】 (1)设x1,x2是定义域上的任意实数,且x10 ∴x1f(x2) 上是减函数. 同理:函数是减函数, 函数是增函数. (2)函数的图象如下 【总结升华】 (1)证明函数单调性要求使用定义; (2)如何比较两个量的大小?(作差) (3)如 ... ...

~~ 您好,已阅读到文档的结尾了 ~~