
1.4 速度变化快慢的描述 ———加速度 第一章 运动的描述 速度的变化量: 联想物体位置的变化量(位移)是如何表示的? 则速度的变化量可以 表示成: 如图所示,求小球在碰撞过程中,速度的变化量? 3m/s 3m/s 正方向 1. 确定正方向 2. 将速度表示出来 3. 速度的变化量等于末速度减初速度, 即Δv=v2-v1 =-3m/s-3m/s=-6m/s, 4. 结果的正负表示速度变化的方向 v1 =3m/s, v2=-3m/s, ●运动快 ——— 速度大 ●起动快 ———速度变化快 什么快? 问题1 如果让摩托车、汽车、飞机在一起进行比赛,谁更快? 一、加速度 问题2 观察数据表格,谁的速度变化快?如何比较? 比较速度变化快慢的方法 相同Δv,比较Δt 相同Δt,比较Δv 谁的速度“变化”得比较快? 普通的小型轿车和旅客列车,速度都能达到100 km/h。但是,它们起步后达到这样的速度所需的时间是不一样的。例如一辆小汽车在20 s内速度达到了100 km/h,而一列火车达到这个速度大约要用500 s。 △v、△t 都不同,如何比较? 案例1、飞机的速度由0增加到300km/h,发生这一变化用时30s。 案例2、迫击炮射击时,炮弹在炮筒中的速度在0.005s的时间内就可以由0增加到250m/s。 比较速度变化快慢的方法 Δv、Δt 都不同 采用比值的方法,比较单位时间内速度的变化量Δv/ Δt 相同Δv,比较Δt 相同Δt,比较Δv 问题3 加速度的作用是什么?加速度的表达式是什么? 问题4 加速度是矢量还是标量?方向呢? 汽车刹车的数据:汽车初速度为10m/s,急刹车的时间是2s。 汽车追尾 减速的不够快 汽车刹车距离是反映汽车性能的一项重要指标 飞机起飞 加速到足够快 飞机的起飞速度决定了飞机能否从航母上安全起飞 科技生活中现象 应用 问题5 速度v大,速度的变化量Δv一定大吗? 速度的变化量Δv大,加速度Δv/ Δt一定大吗? 速度v大,加速度Δv/ Δt 一定大吗? Δv/ Δt 与 v、Δv,没有必然联系 9 0 -20 3 -0.2 0 V、 Δv与 Δv/ Δt的比较: 加速度a的方向与速度v的方向有什么关系? 问题6 二、直线运动中加速度方向与速度方向的关系 a v1 v2 Δ v v1 v2 a Δ v 速度增加,加速度方向与速度的方向相同 速度减小,加速度方向与速度的方向相反 例、如图所示,求小球从开始撞墙到反弹回头的过程中,加速度。(碰撞时间为0.01s) 选择正方向,但通常选初速度的方向为正方向 ⒈ 从v-t图象的斜率看加速度的大小; ⒉ 由v-t图像计算加速度的大小。 三、从v-t 图象看加速度 2.定义:速度的变化量与发生这一变化所用时间的比值 3.表达式: 6.a在数值上等于单位时间内速度的变化量 4.单位: 读作:米每二次方秒 1.物理意义:描述速度变化快慢的物理量 m/s2(或m·s-2) 5.加速度是矢量 加速度 的方向与速度变化量 的方向相同 a = 1 m/s2 表示什么意思? 注意:加速度不是表示速度的变化量,是速度的变化量(△v)与速度的变化率(△v/ △t)不同. 小结 1、下列有关速度与加速度的说法中正确的是 ( ) A. 物体的加速度越大,则速度也越大 B. 物体的速度变化量越大,加速度也越大 C. 物体的速度为零时,加速度必为零 D. 物体的速度变化越快,则加速度越大 【正解】D 2、质点运动的v-t图象如图所示,由图象可知,该质点运动的初速度为 m/s,2 s末的速度为 m/s,在前5 s内质点的加速度大小为 m/s2,方向 . 3、如图是某质点的v-t图象,由图分析质点在各段时间内的运动情况并计算各阶段的加速度. ... ...
~~ 您好,已阅读到文档的结尾了 ~~