
1.3算法案例 一、三维目标 (a)知识与技能 1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。 2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。 (b)过程与方法 在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。 案例1 辗转相除法与更相减损术 (c)情感态度与价值观 1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。 2.在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。 二、教学重难点 重点:理解辗转相除法与更相减损术求最大公约数的方法。 难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。 三、学法 在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法程序框图与算法程序。 3 5 9 15 [问题1]:在小学,我们已经学过求最大公约数的知识,你能求出18与30的最大公约数吗? 〖创设情景,揭示课题〗 18 30 2 3 ∴18和30的最大公约数是2×3=6. 先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 例:求下面两个正整数的最大公约数: (1)求25和35的最大公约数 (2)求49和63的最大公约数 25 (1) 5 5 35 7 49 (2) 7 7 63 9 所以,25和35的最大公约数为5 所以,49和63的最大公约数为7 思考:除了用这种方法外还有没有其它方法? [问题2]:我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数? 〖研探新知〗 1.辗转相除法: 例1 求两个正数8251和6105的最大公约数。 分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数. 解:8251=6105×1+2146 显然8251与6105的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。 〖研探新知〗 1.辗转相除法: 例1 求两个正数8251和6105的最大公约数。 解:8251=6105×1+2146; 6105=2146×2+1813; 2146=1813×1+333; 1813=333×5+148; 333=148×2+37; 148=37×4+0. 则37为8251与6105的最大公约数。 以上我们求最大公约数的方法就是辗转相除法。也叫欧几里得算法,它是由欧几里得在公元前300年左右首先提出的。 完整的过程 8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+333 1813=333×5+148 333=148×2+37 148=37×4+0 例: 用辗转相除法求225和135的最大公约数 225=135×1+90 135=90×1+45 90=45×2 显然37是148和37的最大公约数,也就是8251和6105的最大公约数 显然45是90和45的最大公约数,也就是225和135的最大公约数 思考1:从上面的两个例子中可以看出计算的规律是什么? S1:用大数除以小数 S2:除数变成被除数,余数变成除数 S3:重复S1,直到余数为0 以上我们求最大公约数的方法就是辗转相除法.也叫欧几里得算法,它是由欧几里得在公元前300年左右首先提出的.利用辗转相除法求最大公约数的。 练习1:利用辗转相除法求两数4081与20723的最大公约数. (53) 20723=4081×5+318; 4081=318×12+265; 318=265×1+53; 265=53×5+0. 利用辗转相除法求最大公约数的步骤如下: 第一步:用较大的数m除以较小的数n得到一 ... ...
~~ 您好,已阅读到文档的结尾了 ~~