ID: 9002001

专题强化1 变质量问题与理想气体的图象问题 同步学案(Word版含答案)

日期:2025-10-06 科目:物理 类型:高中学案 查看:83次 大小:509005B 来源:二一课件通
预览图 1/5
问题,专题,图象,答案,版含,Word
  • cover
专题强化1 变质量问题与理想气体的图象问题 [学习目标] 1.会巧妙地选择研究对象,使变质量气体问题转化为定质量的气体问题.2.会利用图象对气体状态、状态变化及规律进行分析,并应用于解决气体状态变化问题. 一、变质量问题 分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问题转化为定质量的气体问题,然后用气体实验定律或理想气体状态方程求解. (1)打气问题 向球、轮胎中充气是一个典型的气体变质量的问题.只要选择球、轮胎内原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题. (2)抽气问题 从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可看做是膨胀的过程. 例1 一只两用活塞气筒的原理如图1所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V0,现将它与另一只容积为V的容器相连接,容器内的空气压强为p0,当分别作为打气筒和抽气筒时,活塞工作n次后,在上述两种情况下,容器内的气体压强分别为(容器内气体温度不变,大气压强为p0)(  ) 图1 A.np0,p0 B.p0, p0 C.(1+)np0,(1+)np0 D.(1+)p0,()np0 答案 D 解析 打气时,活塞每推动一次,就把体积为V0、压强为p0的气体推入容器内,若活塞工作n次,就是把压强为p0、体积为nV0的气体压入容器内,容器内原来有压强为p0、体积为V的气体,根据玻意耳定律得: p0(V+nV0)=p′V. 所以p′=p0=(1+n)p0. 抽气时,活塞每拉动一次,就把容器中的气体的体积从V膨胀为V+V0,而容器中的气体压强就要减小,活塞推动时,将抽气筒中的体积为V0的气体排出,而再次拉动活塞时,又将容器中剩余的气体的体积从V膨胀到V+V0,容器内的压强继续减小,根据玻意耳定律得: 第一次抽气p0V=p1(V+V0), p1=p0. 第二次抽气p1V=p2(V+V0) p2=p1=()2p0 活塞工作n次,则有: pn=()np0.故正确答案为D. 在分析和求解气体质量变化的问题时,首先要将质量变化的问题变成质量不变的问题,否则不能应用气体实验定律.如漏气问题,不管是等温漏气、等容漏气,还是等压漏气,都要将漏掉的气体“收”回来.可以设想有一个“无形弹性袋”收回漏气,且漏掉的气体和容器中剩余气体同温、同压,这样就把变质量问题转化为定质量问题,然后再应用气体实验定律求解. 针对训练 用打气筒将压强为1 atm的空气打进自行车轮胎内,如果打气筒容积ΔV=500 cm3,轮胎容积V=3 L,原来压强p=1.5 atm.现要使轮胎内压强变为p′=4 atm,若用这个打气筒给自行车轮胎打气,则要打气次数为(设打气过程中空气的温度不变)(  ) A.10 B.15 C.20 D.25 答案 B 解析 温度不变,由玻意耳定律的分态气态方程得 pV+np1ΔV=p′V, 代入数据得 解得n=15. 二、理想气体的图象问题 名称 图象 特点 其他图象 等 温 线 p-V pV=CT(C为常量),即pV之积越大的等温线对应的温度越高,离原点越远 p- p=,斜率k=CT,即斜率越大,对应的温度越高 等 容 线 p-T p=T,斜率k=,即斜率越大,对应的体积越小 等 压 线 V-T V=T,斜率k=,即斜率越大,对应的压强越小 例2 使一定质量的理想气体的状态按图2甲中箭头所示的顺序变化,图中BC段是以纵轴和横轴为渐近线的双曲线的一部分. 图2 (1)已知气体在状态A的温度TA=300 K,求气体在状态B、C和D的温度各是多少? (2)将上述状态变化过程在图乙中画成用体积V和热力学温度T表示的图线(图中要标明A、B、C、D四点,并且要画箭头表示变化的方向),说明每段图线各表示什么过程. 答案 (1)600 K 600 K 300 K (2)见解析 解析 从p-V图中可以直观地看出,气体在A、B、C、D各 ... ...

~~ 您好,已阅读到文档的结尾了 ~~