ID: 15836233

专题24 三角形(选择题60题)(含解析)-【冲刺2023中考】真题冲刺专题(知识点+专题训练)

日期:2024-11-01 科目:数学 类型:初中学案 查看:79次 大小:2010710B 来源:二一课件通
预览图 1/5
专题,冲刺,知识点,真题,中考,2023
  • cover
中小学教育资源及组卷应用平台 【真题汇编】2023年中考数学备考之三角形 1.三角形 (1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 组成三角形的线段叫做三角形的边. 相邻两边的公共端点叫做三角形的顶点. 相邻两边组成的角叫做三角形的内角,简称三角形的角. (2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形). (3)三角形的主要线段:角平分线、中线、高. (4)三角形具有稳定性. 2.三角形的角平分线、中线和高 (1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高. (2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线. (3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线. (4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段. (5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 3.三角形的面积 (1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高. (2)三角形的中线将三角形分成面积相等的两部分. 4.三角形的稳定性 当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.这一特性主要应用在实际生活中. 5.三角形的重心 (1)三角形的重心是三角形三边中线的交点. (2)重心的性质: ①重心到顶点的距离与重心到对边中点的距离之比为2:1. ②重心和三角形3个顶点组成的3个三角形面积相等. ③重心到三角形3个顶点距离的和最小.(等边三角形) 6.三角形三边关系 (1)三角形三边关系定理:三角形两边之和大于第三边. (2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形. (3)三角形的两边差小于第三边. (4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略. 7.三角形的外角性质 (1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角. 三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对. (2)三角形的外角性质: ①三角形的外角和为360°. ②三角形的一个外角等于和它不相邻的两个内角的和. ③三角形的一个外角大于和它不相邻的任何一个内角. (3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去. (4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角. 8.全等三角形的判定 (1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等. (2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等. (3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等. (4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等. (5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等. 方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边. 9.全等三角形的判定与性质 (1)全等三角形的判定是结 ... ...

~~ 您好,已阅读到文档的结尾了 ~~