ID: 19555931

3.3.1 移项 课件(共13张PPT) 2023-2024学年数学湘教版七年级上册

日期:2025-10-19 科目:数学 类型:初中课件 查看:60次 大小:133426B 来源:二一课件通
预览图 1/6
3.3.1,移项,课件,13张,PPT,2023-2024
  • cover
(课件网) 第三章 一元一次方程 3.3.1 移项 3.3 一元一次方程的解法 1.理解移项法则,知道移项的依据 2.会熟练运用移项法则解一元一次方程 约公元820年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁译本为《对消与还原》.“对消”与“还原”是什么意思呢? 问题:把一些图书分给某班同学阅读,如果每人3本,则剩余20本;若每人4本,则还缺少25本,这个班的学生有多少人? 分析: 设这个班有x名学生 这批书共有(3x+20)本 这批书共有(4x-25)本 表示同一个量的两个不同的式子相等(即:这批书的总数是一个定值) 3x+20=4x-25 我们把求方程的解的过程叫做解方程 两边同时-4x 两边同时-20 x=45 解析: 即 3x-4x=-25-20 3x+20 = 4x-25 把等式中的某项移到等式的另一边时需要变号. 像上面那样,把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.牢记:移项要变号. 把某项从等式一边移到另一边时有什么变化? 例 解下列方程 解:移项,得: 合并同类项,得: 两边都除以5,得: 解:移项,得: 合并同类项,得: 两边都乘-2,得: x=5 5x=25 3x+2x=32-7 (1)3x+7=32-2x 检验:把x=5分别代入方程左、右两边 左边=3×5+7=22,右边=32-2×5=22 左边=右边,所以x=5是原方程的解. 检验:把x=-8分别代入方程左、右两边 左边=(-8)-3=-11,右边= 左边=右边,所以x=-8是原方程的解. 注意:关于移项 1.所移的项一定要变号; 2.不能与加法交换律混淆; 3.依据是:等式的性质1; 4.目的是:为了得到形如ax=b的方程. 一般地,从方程解得未知数的值以后,要代入原方程进行检验,看这个值是否是原方程的解,但这个检验过程除特别要求外,一般不写出来. ⑴方程3x-4=1,移项得: . ⑵方程2x+3=5,移项得: . ⑶方程5x=x+1,移项得: . ⑷方程2x-7=-5x,移项得: . ⑸方程4x=3x-8,移项得: . ⑹方程x=3x-5x-9,移项得: . 2x+5x=7 4x-3x=-8 x-3x+5x=-9 注意:移项要改变符号;移项时含有未知数的项放在等号左边,常数项放在等号右边,即“x=a”的形式. 1.将下列各式移项(口答) 3x=1+4 2x=5-3 5x-x=1 3.下列方程的变形正确的是(  ) A.由2x+3x=7+8,得5x=15 B.由3x-4x=5+3,得x=8 C.由-2x=-3,得x= D.由 x=7,得x= 2.方程2x﹣1=3的解是(  ) A.﹣1 B.﹣2 C.1 D.2 D A 4.已知x=1是关于x的方程3m+8x=m+x的解,求m值. 3m-m = 1-8 解:把x = 1代入方程得: 3m + 8 = m+1 2m = -7 移项,得: 合并同类项,得: 两边都除以2,得: m = 5.运用移项求解下列的方程. (1)6x=16﹣2x (2)5x-6=3x-2 解:移项,得: 合并同类项,得: 两边都除以8,得: x=2 8x=16 6x+2x=16 解:移项,得: 合并同类项,得: 两边都除以2,得: x=2 2x=4 5x-3x=-2+6 一元一次方程的解法 求方程的解的过程 把方程转化为ax=b,使其更接近x=a的形式(其中a,b是常数) 解方程 移项 等式一边的某项变号后移到另一边,叫做移项. 移项要变号 概念 解法 ... ...

~~ 您好,已阅读到文档的结尾了 ~~