ID: 20032942

2024届北京海淀一模阅理CD篇长难句解析讲义素材

日期:2025-05-24 科目:英语 类型:高中素材 查看:85次 大小:30034B 来源:二一课件通
预览图 1/5
2024届,北京,海淀,一模,阅理,CD
  • cover
2024年北京海淀高三一模英语阅理CD篇长难句解析 C篇 Researchers hope brain implants will one day help people with aphasia(失语症) to get their voice back—and maybe even to sing. Now, for the first time, scientists have demonstrated that the brain’s electrical activity can be decoded and used to reconstruct music. A new study analyzed data from 29 people monitored for epileptic seizures(癫痫发作), using electrodes(电极) on the surface of their brain. As participants listened to a selected song, electrodes captured brain activity related to musical elements, such as tone, rhythm, and lyrics. Employing machine learning, Robert Knight from UC Berkeley and his colleagues reconstructed what the participants were hearing and published their study results. The paper is the first to suggest that scientists can “listen secretly to” the brain to synthesize(合成) music. To turn brain activity data into musical sound, researchers trained an artificial intelligence (AI)model to decode data captured from thousands of electrodes that were attached to the participants as they listened to the song while undergoing surgery. Once the brain data were fed through the model, the music returned. The model also revealed some brain parts responding to different musical features of the song. Although the findings focused on music, the researchers expect their results to be most useful for translating brain waves into human speech. Ludovic Bellier, the study’s lead author, explains that speech, regardless of language, has small melodic differences—tempo, stress, accents, and intonation—known as prosody(韵律). These elements carry meaning that we can’t communicate with words alone. He hopes the model will improve brain-computer interfaces (BCI), assistive devices that record speech-associated brain waves and use algorithms to reconstruct intended messages. This technology, still in its infancy, could help people who have lost the ability to speak because of aphasia. Future research should investigate whether these models can be expanded from music that participants have heard to imagined internal speech. If a brain-computer interface could recreate someone’s speech with the prosody and emotional weight found in music, it could offer a richer communication experience beyond mere words. Several barriers remain before we can put this technology in the hands—or brains— of patients. The current model relies on surgical implants. As recording techniques improve, the hope is to gather data non-invasively, possibly using ultrasensitive electrodes. However, under current technologies, this approach might result in a lower speed of decoding into natural speech. The researchers also hope to improve the playback clarity by packing the electrodes closer together on the brain’s surface, enabling an even more detailed look at the electrical symphony the brain produces. 解析1:Employing machine learning, Robert Knight from UC Berkeley and his colleagues reconstructed what the parti ... ...

~~ 您好,已阅读到文档的结尾了 ~~