中小学教育资源及组卷应用平台 第二十四章《一元二次方程》单元核心知识归纳与题型突破 一、一元二次方程的定义 (1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程. (2)概念解析: 一元二次方程必须同时满足三个条件: ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2. 判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”. 二、一元二次方程的一般形式 (1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式. 其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了. 要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式. 三、一元二次方程的解 (1)一元二次方程的解(根)的意义: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. (2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax 2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量. ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0). 四、解一元二次方程-直接开平方 形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 如果方程化成x2=p的形式,那么可得x=±; 如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±. 注意:①等号左边是一个数的平方的形式而等号右边是一个非负数. ②降次的实质是由一个二次方程转化为两个一元一次方程. ③方法是根据平方根的意义开平方. 五、解一元二次方程-配方法 (1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)用配方法解一元二次方程的步骤: ①把原方程化为ax2+bx+c=0(a≠0)的形式; ②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方; ④把左边配成一个完全平方式,右边化为一个常数; ⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解. 六、解一元二次方程-公式法 (1)把(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式. (2)用求根公式解一元二次方程的方法是公式法. (3)用公式法解一元二次方程的一般步骤为: ①把方程化成一般形式,进而确定a,b,c的值(注意符号); ②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根); ③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根. 注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0. 七、解一元二次方程-因式分解法 (1)因式分解法解一元二次方程的意义 因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法. 因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想). (2)因式分解 ... ...
~~ 您好,已阅读到文档的结尾了 ~~