教学设计 椭圆及其标准方程 一、内容和内容解析 (一)内容 椭圆及其标准方程 (二)内容解析 解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用。本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等。因此,教学时应重视体现数学的思想方法及价值。基于以上分析,确定本节课的教学重点是:椭圆的定义、椭圆的标准方程、坐标化的基本思想。 二、学生学情分析 这节内容是继学生学习了直线和圆的方程,对曲线和方程的概念以及用坐标法研究几何问题的方法有了一些了解和认识,基本能运用求曲线方程的一般方法求曲线方程的基础上,进一步学习用坐标法研究曲线的第一课,具有巩固旧知、熟练方法、拓展新知的承上启下作用,可为研究双曲线、抛物线提供基本模式和理论基础,是发展学生自主学习能力,培养创新能力的好素材。 三、目标和目标解析 (一)目标 1.通过实验中抽象出椭圆的定义; 2.理解椭圆的标准方程的推导,在化简椭圆方程的过程中提高学生的运算能力; 3.掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。 重难点: 1.通过实验中抽象出椭圆的定义; 2.理解椭圆的标准方程的推导,在化简椭圆方程的过程中提高学生的运算能力; (二)目标解析 1.经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力;通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风;充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识; 2.巩固用坐标化的方法求动点轨迹方程;重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣;通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美; 3.对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识。利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心。 四、教学问题诊断分析 (一)教学的第一个问题可能是椭圆是怎样画出的。教学中通过椭圆与圆的关系,让学生观察与操作,利用平面截圆锥的动态演示及利用细绳画椭圆,建立直观的概念,要鼓励学生大胆操作。 问题解决方案:两定点距离、绳长与图形的关系,通过操作完善定义。 (二)教学的第二个问题是椭圆标准方程的推导与化简中含有两个根式的等式化简。 问题解决方案:由于用两边同时平方法化简较为繁琐,有些学生完成可能的有困难,老师要及时加以指导。 (三)教学的第三个问题可能是焦点在轴椭圆方程的得出。 问题解决方案:可以利用类比“化归”的思想,类比焦点在轴的推导过程,发现与互换的特点,从而利用焦点在轴上椭圆的标准方程得到焦点在轴上椭圆的标准方程,避免繁琐、重复的推导过程。基于以上分析,确定本节课的教学难点是:椭圆标准方程的推导与化简。 五、教学策略分析 本节课的设计力图体现“教师为主导,学生为主体”的教学设想,在教学过程中始终本着“教师是课堂教学的组织者、引导者、合作者”的原则,让学生通过实验、观察、分析、推理、交流、合作、小结、反思等过程建构新知识,并初步学会从数学角度去观察事物和思考问题,激发学生学习数学的热情和兴趣。 六、教学支持条件分析 根据本节内容的特点,为了更直观、形象地突出重点,突 ... ...
~~ 您好,已阅读到文档的结尾了 ~~