中小学教育资源及组卷应用平台 4多边形的内角与外角和 一、单选题 1.已知正多边形的一个外角为,则该正多边形的边数是( ) A.5 B.6 C.8 D.10 2.正六边形的每个内角都是( ) A.60° B.80° C.100° D.120° 3.下列图形中,内角和与外角和相等的多边形是( ) A. B. C. D. 4.若一个n边形的内角和是其外角和的2倍,则n的值为( ) A.4 B.5 C.6 D.7 5.已知一个多边形的内角和是外角和的4倍,则这个多边形( ) A.八边形 B.十二边形 C.十边形 D.九边形 二、填空题 6.已知多边形每个内角都等于150°,则这个多边形的内角和为 . 7.一个多边形的内角和与外角和的差为,则它的边数为 . 8.如果一个正多边形的内角和是它外角和的两倍,则的值为 . 9.一个多边形的每个外角都等于 ,则这个多边形的边数为 . 10.一个多边形的内角和比三角形的外角和多,则此多边形是 . 11.八边形的外角和等于 . 三、计算题 12.若一个多边形的每一个外角都比它相邻内角的多,求这个多边形的边数. 四、解答题 13.已知一个n边形,它的内角和等于 ,求这个n边形的边数. 五、综合题 14.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半. (1) 求这个多边形是几边形; (2) 求这个多边形的内角和 15.已知一个多边形的边数为,若这个多边形的每个内角都比与它相邻的外角的4倍多,求这个多边形对角线的总条数. 16.如图,小明从点A出发,前进10m后向右转30°,再前进10m后又向右转30°,……,如此反复下去,直到她第一次回到出发点A,他所走的路径构成了一个正多边形. (1)求小明一共走了多少米; (2)求这个正多边形的内角和. 答案解析部分 1.【答案】D 【知识点】多边形内角与外角 2.【答案】D 【知识点】多边形内角与外角 3.【答案】C 【知识点】多边形内角与外角 4.【答案】C 【知识点】多边形内角与外角 5.【答案】C 【知识点】多边形内角与外角 6.【答案】1800° 【知识点】多边形内角与外角 7.【答案】5 【知识点】多边形内角与外角;一元一次方程的实际应用-几何问题 8.【答案】6 【知识点】多边形内角与外角 9.【答案】5 【知识点】多边形内角与外角 10.【答案】七边形 【知识点】多边形内角与外角 11.【答案】360° 【知识点】多边形内角与外角 12.【答案】6 【知识点】多边形内角与外角 13.【答案】解:这个多边形是 边形,根据题意得: , 解得: . 故这个多边形是十二边形. 【知识点】多边形内角与外角 14.【答案】(1) 设多边形的每一个内角为x,则每一个外角为 x, 由题意得,x+ x=180°, 解得,x=120°, x=60°, 这个多边形的边数为: =6, 答:这个多边形是六边形 (2)解:由(1)知,该多边形是六边形,∴内角和=(6﹣2)×180°=720° 答:这个多边形的内角和为720°。 【知识点】多边形内角与外角 15.【答案】 【知识点】多边形的对角线;多边形内角与外角;一元一次方程的实际应用-几何问题 16.【答案】(1)小明一共走了120米 (2)这个多边形的内角和是. 【知识点】多边形内角与外角 21世纪教育网(www.21cnjy.com) 2 / 4 ... ...
~~ 您好,已阅读到文档的结尾了 ~~