
17.1 勾股定理 一、单选题 1.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是( ) A.(5,0) B.(8,0) C.(0,5) D.(0,8) 2.如图,海中有一小岛A,在B点测得小岛A在北偏东30°方向上,渔船从B点出发由西向东航行10到达C点,在C点测得小岛A恰好在正北方向上,此时渔船与小岛A的距离为( ) A. B. C.20 D. 3.如图,在中,,点在边上,且平分的周长,则的长是( ) A. B. C. D. 4.如图,在中,,,,点为边上的中点,交的延长线于点,交的延长线于点,且.若,则的面积为( ) A.13 B. C.8 D. 5.蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点均为正六边形的顶点.若点的坐标分别为,则点的坐标为( ) A. B. C. D. 6.《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数,,的计算公式:,,,其中,,是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是( ) A.3,4,5 B.5,12,13 C.6,8,10 D.7,24,25 7.数学兴趣小组为测量学校A与河对岸的科技馆B之间的距离,在A的同岸选取点C,测得AC=30,∠A=45°,∠C=90°,如图,据此可求得A,B之间的距离为( ) A.20 B.60 C.30 D.30 8.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形,若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( ) A.4 B.8 C.12 D.16 9.如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若,,则点到的距离为( ) A. B. C.1 D.2 10.如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( ) A. B. C. D. 二、填空题 11.如图,在中,,D为AC上一点,若是的角平分线,则 . 12.如图,在中,,是边的中线,若,,则的长度为 . 13.如图,在矩形中,.连接,在和上分别截取,使.分别以点E和点F为圆心,以大于的长为半径作弧,两弧交于点G.作射线交于点H,则线段的长是 . 14.如图,小红家购置了一台圆形自动扫地机,放置在屋子角落(书柜、衣柜与地面均无缝隙).在没有障碍物阻挡的前提下,扫地机能自动从底座脱离后打扫全屋地面.若这台扫地机能从角落自由进出,则图中的x至少为 (精确到个位,参考数据:). 15.如图,依下列步骤尺规作图,并保留作图痕迹: (1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于E,F两点,作直线EF; (2)以点A为圆心,适当长为半径画弧,分别交AB,AC于点G,H,再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠BAC的内部相交于点O,画射线AO,交直线EF于点M.已知线段AB=6,∠BAC=60°,则点M到射线AC的距离为 . 16.如图,在Rt△ABC中,∠B=90°,AB=4,BC=8,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于点P和点Q,直线PQ与AC交于点D,则AD的长为 . 17.勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是 (结果用含m的式子表示). 18.“勾股树”是以正方 ... ...
~~ 您好,已阅读到文档的结尾了 ~~