ID: 22615861

4.6 两条平行线间的距离 导学案(含答案) 2024-2025学年湘教版(2024)初中数学七年级下册

日期:2025-04-20 科目:数学 类型:初中学案 查看:66次 大小:175956B 来源:二一课件通
预览图 1/2
学年,七年级,数学,初中,2024,教版
  • cover
4.6 两条平行线间的距离 【素养目标】 1.知道公垂线、公垂线段和两条平行线间的距离的概念,会测量两条平行线间的距离. 2.知道两条平行线的所有公垂线段都相等. 3.通过将平行线间的距离转化为点到直线的距离,体验转化的数学思想,培养模型意识. 【重点】  理解平行线之间的距离的意义. 【自主预习】 1.两点之间距离的定义是什么 2.点到直线的距离的定义是什么 3.两条平行线间的距离是什么 【参考答案】1.两点之间线段的长度叫作两点之间的距离. 2.点到直线的垂线段的长度叫作点到直线的距离. 3.两条平行线的公垂线段的长度或其中一条直线上任意一个点到另一条直线的距离. 1.如图,直线a∥b,则直线a,b之间的距离是 ( ) A.线段CD的长度 B.线段AC的长度 C.线段AB的长度 D.线段BD的长度 2.如图,a∥b,那么a,b之间的距离的是 ( ) A.线段AB的长度 B.线段EF的长度 C.线段AE的长度 D.线段BC的长度 【参考答案】1.A 2.B 【合作探究】 公垂线、公垂线段及其性质 阅读课本本课时“思考”到“数学上已经证明上述结论是真的”的内容,思考下列问题. 1.如图,l1∥l2,在直线l1上任取两点A,C,分别作AB⊥l2,CD⊥l2,垂足分别为点B,D,于是AB⊥l1,CD⊥l1,即AB和CD所在直线与两条平行直线l1,l2都垂直,这样的 (AB和CD所在直线)叫作这两条平行直线的 ,这时连接两个垂足的 (AB和CD)叫作这两条平行直线的 .图中的线段AB,CD都是平行线l1与l2的公垂线段. 2.两条平行线有 条公垂线,有 条公垂线段. 3.请测量出图中AB的长度与CD的长度,由测量可知AB与CD长度 ,再画几条公垂线段,这些公垂线段的长度与AB的长度 . 4.由3可知两条平行线的所有公垂线段都 . 【参考答案】1.直线 公垂线 线段 公垂线段 2.无数 无数 3.相等 相等 4.相等 1.两条平行线的公垂线段有 ( ) A.1条 B.2条 C.3条 D.无数条 2.两条平行的铁轨间的枕木的长度都相等,依据的数学原理是 . 【参考答案】1.D 2.两条平行线的所有公垂线段都相等 平行线间的距离 阅读课本本课时剩余的所有内容,梳理知识. 3.两平行线间的距离是指它们的 ( ) A.公垂线 B.公垂线段 C.公垂线段的长度 D.以上都不对 4.如图,DE⊥AB于点E,经测量AD=BC=1.8 cm,DE=1.5 cm.AB与CD两平行线间距离是 . 5.已知直线a∥b∥c,a与b的距离是6 cm,a与c的距离是4 cm,求b与c之间的距离. 【参考答案】3.C 4.1.5 cm 5.解:当c在a与b之间时,c与b的距离为6-4=2(cm); 当c不在a与b之间时,c与b相距为6+4=10(cm), 所以b与c之间的距离是2 cm或10 cm. 面积问题 例 如图1,直线EF∥MN,P是EF上的动点. 图1        图2 (1)当点P的位置变化时,△PAB的面积的变化规律如何 为什么 (2)如图2,若点Q为EF上另一动点,连接QA,QB,QA与PB相交于点O,那么△POA与△BOQ的面积有何大小关系 请说明理由. 变式训练  如图,AD∥BC,BC=2AD,若S△ABD=10 cm2,则S△BCD为 cm2. 【参考答案】例 答:(1)△PAB的面积不变.因为△PAB以AB为底,高总是平行线EF与MN的公垂线段,根据同底等高的两个△面积相等可知△PAB的面积不变. (2)△POA与△BOQ面积相等.由(1)可知△PAB与△QAB的面积相等,△POA的面积等于△PAB减去△AOB的面积,△QOB的面积等于△ABQ的面积减去△AOB的面积. 变式训练 20 ... ...

~~ 您好,已阅读到文档的结尾了 ~~