ID: 22677141

七年级数学下册新人教版第八章《实数》课时练习(含答案)

日期:2025-04-05 科目:数学 类型:初中试卷 查看:96次 大小:329884B 来源:二一课件通
预览图 1/5
七年级,练习,课时,实数,第八,数学
  • cover
七年级数学下册新人教版第八章《实数》课时练习 一、单选题 1.若,则的值为( ) A. B.4 C. D.8 2.若,则a的值为( ). A.20 B.200 C.2000 D.0.02 3.下列计算正确的是( ) A. B. C. D. 4.已知的算术平方根是,的立方根是,的平方根是,的立方根是,则和分别是( ) A. B. C. D. 5.下列说法中正确的是( ) A.的平方根为 B.的算术平方根为 C.0的平方根与算术平方根都是0 D.的平方根为 6.若,,则的值是( ) A.0 B.4 C.0或4 D.2或4 二、填空题 7.的立方根是 . 8.若=1-x,则x的值为 ; 9.一个实数的两个平方根分别是和,则这个实数是 . 10.对于正有理数,运算“*”定义为,则= . 11.写出一个无理数,使这个无理数的绝对值小于4: . 12. ; ; ; ; ; ; . 13.已知的倒数是,的相反数的绝对值是,是的立方根,则的平方根是 . 14.将4个数a,b,c,d排列成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则x= . 15.观察下列等式: 第1层1+2=3 第2层4+5+6=7+8 第3层9+10+11+12=13+14+15 第4层16+17+18+19+20=21+22+23+24 … 在上述的数字宝塔中,从上往下数,2020在第 层. 三、解答题 16.(1)求x的值:; (2)计算:. 17.计算: 求下列各数的算术平方根: (1)900; (2)1; 求下列各数的平方根: (3); (4)14. 18.已知实数x,y满足. (1)求x,y的值; (2)求的平方根. 19.把下列各数分别填入相应的集合里: ,(每两个2之间依次增加一个1),,. 正有理数集合:{ …}; 负有理数集合:{ …}; 正无理数集合:{ …} 负无理数集合:{ …}. 20.如图,顺次连结方格四条边的中点,得到一个正方形.设每一个小方格的边长为1个单位. (1)正方形的边长介于哪两个相邻的整数之间,请说明理由. (2)如果把正方形放到数轴上,使得边与数轴重合,且点A与数轴的原点重合,数轴的单位长度就是小方格的边长,请写出点B在数轴上所表示的数. 21.小岳同学仿造二进制,写出了一种数的表示方法:一个n位数,其中的值只能取0或1,他把这样的数叫做本原数.比如当时,2位本原数可以表示00,01,10,11共4个数. 然后小岳设计了一种针对两个本原数的运算,如果,那么定义: (1)计算的值为:_____; (2)若,且,求本原数t的值; (3)①若为k个互不相同的4位本原数,满足对任意,当时,为奇数;当时,为偶数,直接写出k的最大值:_____; ②若为k个互不相同的2019位本原数,满足对任意,当时,,直接写出k的最大值:_____ 22.阅读理解:规定两数,之间的一种运算,记作;如果,那么.例如:因为,所以. (1)根据上述规定,填空: ①_____; ②若,则_____; ③若,则_____. (2)若,,.请探索,,之间的数量关系并说明理由. 试卷第1页,共3页 试卷第1页,共3页 《七年级数学下册新人教版第八章《实数》课时练习》参考答案 题号 1 2 3 4 5 6 答案 A B B C C C 7. 8.1 9.36 10. 11.(答案不唯一) 12. 8 8 0 13. 14.4 15.44. 16.解:(1), 整理得:, 两边开平方得:, 解得:; (2) . 17.(1)900的算术平方根是30, (2)1的算术平方根是1, (3)的平方根是, (4)14的平方根是. 18.(1)由题意得:,, 解得:, (2)由(1)得:,, ∴, ∴的平方根 19.解:,, 正有理数集合:; 负有理数集合:; 正无理数集合:,(每两个2之间依次增加一个1),; 负无理数集合:. 20.解:(1)由方格可得: 正方形ABCD的面积为:, ∴, ∵, ∴介于2和3之间; (2)由(1)得:,由点A与原点重合,则有: 当点B在原点的左侧时,则点B表示的数为, 当点B在原点的右侧时,点B表示的数为; 综上所述:点B在数轴上所表示的数为或. 2 ... ...

~~ 您好,已阅读到文档的结尾了 ~~