ID: 23077099

北京五中分校2024-2025学年九年级(下)开学考数学试卷(含答案)

日期:2025-10-12 科目:数学 类型:初中试卷 查看:19次 大小:1501068B 来源:二一课件通
预览图 1/5
北京,五中,分校,2024-2025,学年,九年级
  • cover
2025北京五中分校初三(下)开学考 数 学 一、选择题(每题2分,共16分) 1. 北京大运河博物馆在2024年举办了“探秘古蜀文明———三星堆与金沙”展览,为公众揭开了一个丰富多彩的古蜀世界,其中三星堆纹饰展现了古蜀文明高超的艺术创造力.下列纹饰图案中,是中心对称图形的是( ) A. B. C. D. 2. 在平面直角坐标系中,抛物线向左平移1个单位长度得到的抛物线为( ) A. B. C. D. 3. 如图,分别与相切于A,B两点,,则的度数为( ) A. B. C. D. 4. 将二次函数化成的形式,下列结论中正确的是( ) A. B. C. D. 5. 若关于的方程有两个相等的实数根,则实数的值是( ) A. B. 4 C. D. 6. 同时抛掷两枚质地均匀的硬币,则两枚硬币朝向相同的概率是( ) A. B. C. D. 7. 如图,为的直径,弦于点.若,,则的长为(  ) A. 2 B. 3 C. 4 D. 5 8. 如图,在中,,, (其中).于点D,点E在边上, 设,,, 给出下面三个结论∶①;②;③的长是关于 x 的方程 的一个实数根.上述结论中,所有正确结论的序号是( ) A. ① B. ①③ C. ②③ D. ①②③ 二、填空题(每题2分,共16分) 9. 在平面直角坐标系中,点关于原点的对称点是_____. 10. 已知二次函数满足条件:①有最大值;②它的图象经过点,写出一个满足上述所有条件的二次函数的解析式_____. 11. 如图,为的直径,内接于.若,则_____. 12. 若反比例函数经过点和点,则_____. 13. 如图,在平面直角坐标系中,抛物线和直线交于点O和点A.若点A的横坐标是3,则的解集为_____. 14. 、是函数图像上的两个点,,的大小关系是_____. 15. 小明看到公园地面上有一个心形封闭图形A,为了研究图形A的面积,设计了一项试验:在图形A外部绘制个半径为1米的圆,如图所示,向这个圆内随机投掷石子.假设石子落在圆内的每一点都是等可能的(不考虑边界),记录的试验数据如下:随着投掷次数的不断增多,石子落在图形A内的频率逐渐稳定在0.4左右,因此估计石子落在图形A内的概率为_____;由此估计图形A的面积为_____平方米. 掷石子的总次数p 50 100 200 500 … 石子落在图形A内的次数m 15 43 80 201 … 石子落在阴影部分的次数n 35 57 120 299 … 16. 某酒店在客人退房后清洁客房需打扫卫生、整理床铺、更换客用物品、检查设备共四个步骤某清洁小组有甲、乙、丙三名工作人员,工作要求如下:①“打扫卫生”只能由甲完成;每间客房“打扫卫生”完成后,才能进行该客房的其他三个步骤,这三个步骤可由任意工作人员完成并可同时进行;②一个步骤只能由一名工作人员完成,此步骤完成后该工作人员才能进行其他步骤;③每个步骤所需时间如表所示:在不考虑其他因素的前提下,若由甲单独完成一间客房的清洁工作,需要_____分钟;若由甲、乙、丙合作完成四间客房的清洁工作,则最少需要_____分钟. 步骤 打扫卫生 整理床铺 更换客用物品 检查设备 所需时间/分钟 9 7 6 4 三、解答题(共68分,第17-22题每题5分,第23-26题每题6分,第27-28题每题7分)解答应写出文字说明、证明过程或演算步骤. 17. 计算:. 18. 已知,求代数式的值. 19. 下面是小石设计的“过圆外一点作圆的切线”的尺规作图过程. 已知:及外一点P. 求作:直线和直线,使得切于点A,切于点B. 作法:如图, ① 连接,作线段的垂直平分线,交于点Q ; ② 以点Q为圆心,的长为半径作圆,交于点A和点B; ③ 作直线和直线. 所以直线和就是所求作的直线. 根据小石设计的尺规作图过程, (1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明. 证明:连接. ∵是的直径, ∴ ( )(填推理的依据). ∴. ∵为的半径, ∴是的切线( )(填推理的依据). 20. 已知抛物线图象上部分点的横坐标x与纵坐标y的对 ... ...

~~ 您好,已阅读到文档的结尾了 ~~