
21.1 二次函数 教学目标 1.以实际问题为例理解二次函数的概念,并掌握二次函数关系式的特点. 2.能够根据实际问题熟练地列出二次函数的关系式,并求出函数的自变量的取值范围. 3.联系学生已有知识,让学生积极参与函数的学习过程,使学生体会函数的思想. 重点难点 【重点】 二次函数的概念. 【难点】 能够根据实际问题熟练地列出二次函数的关系式,并求出函数的自变量的取值范围. 教学过程 一、问题引入 1.一次函数和反比例函数是如何表示变量之间的关系的 [一次函数的表达式是y=kx+b(k≠0),反比例函数的表达式是y=(k≠0)] 2.如果改变正方体的棱长x,那么正方体的表面积y会随之改变,y和x之间有什么关系 (正方体的表面积y与棱长x之间的关系式是y=6x2.) 3.物体自由下落的距离s随时间t的变化而变化,s与t之间有什么关系 (下落的距离s随时间t变化的关系式是s=gt2.) 上面问题2、3中变量之间的关系可以用哪一种函数来表示 这种函数有哪些性质 它的图象是什么 它与以前学过的函数、方程等有哪些关系 这就是本节课要学习的二次函数.(教师板书课题) 二、新课教授 师:我们再来看几个问题. 问题1 某水产养殖户用长40 m的围网,在水库中围一块矩形的水面,投放鱼苗.要使围成的水面面积最大,则它的边长应是多少米 这个问题首先要找出围成的矩形水面面积与其边长之间的关系.设围成的矩形水面的一边长为x m,那么,矩形水面的另一边长应为(20-x)m.若它的面积为S m2,则有S=x(20-x)=-x2+20x. 问题2 有一玩具厂,如果安排装配工15人,那么每人每天可装配玩具190个;如果增加人数,那么每增加1人,可使每人每天少装配玩具10个.问增加多少人才能使每天装配玩具总数最多 玩具总数最多是多少 设增加x人,这时,共有(15+x)个装配工,每人每天可少装配10x个玩具,因此,每人每天只装配(190-10x)个玩具.所以,增加人数后,每天装配玩具总数y可表示为 y=(190-10x)(15+x)=-10x2+40x+2 850. 这两个问题中,函数关系式都是用自变量的二次式表示的. 二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数.其中,x是自变量,a叫做二次项的系数,b叫做一次项的系数,c叫做常数项. 二次函数的自变量的取值范围一般都是全体实数,但是在实际问题中,自变量的取值范围应使实际问题有意义.如问题1中,0
~~ 您好,已阅读到文档的结尾了 ~~