ID: 23599898

2.5.2 椭圆的几何性质(课件 学案 练习)高中数学人教B版(2019)选择性必修 第一册

日期:2025-09-19 科目:数学 类型:高中课件 查看:75次 大小:6534734B 来源:二一课件通
预览图 0
2.5.2,人教,必修,选择性,2019,高中
    2.5.2 椭圆的几何性质 1.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于(  ) A.3          B.6 C.8 D.12 2.过点(3,2)且与椭圆3x2+8y2=24有相同焦点的椭圆方程为(  ) A.+=1 B.+=1 C.+=1 D.+=1 3.已知F1,F2分别为椭圆+=1的左,右焦点,A为上顶点,则△AF1F2的面积为(  ) A.6 B.15 C.6 D.3 4.明朝的一个葡萄纹椭圆盘如图①所示,清朝的一个青花山水楼阁纹饰椭圆盘如图②所示,北宋的一个汝窑椭圆盘如图③所示,这三个椭圆盘的外轮廓均为椭圆.已知图①,②,③中椭圆的短轴长与长轴长的比值分别为,,,设图①,②,③中椭圆的离心率分别为e1,e2,e3,则(  ) A.e1>e2>e3 B.e1>e3>e2 C.e2>e1>e3 D.e2>e3>e1 5.(多选)已知点P是椭圆C:+y2=1上的动点,点Q是圆D:(x+1)2+y2=上的动点,则(  ) A.椭圆C的焦距为 B.椭圆C的离心率为 C.圆D在椭圆C的内部 D.|PQ|的最小值为 6.若椭圆+=1(a>b>0)的离心率为,短轴长为4,则椭圆的标准方程为    . 7.如图,把椭圆+=1的长轴(线段AB)分成8等份,过每个分点作x轴的垂线,分别交椭圆于P1,P2,P3,…,P7七个点,F是椭圆的左焦点,则|P1F|+|P2F|+…+|P7F|=    . 8.已知A为y轴上一点,F1,F2是椭圆的两个焦点,△AF1F2为正三角形,且AF1的中点B恰好在椭圆上,则此椭圆的离心率为    . 9.过椭圆的左焦点F1且倾斜角为60°的直线交椭圆于A,B两点,若|F1A|=2|F1B|,求椭圆的离心率e. 10.在椭圆+y2=1上有两个动点P,Q,E(1,0)为定点,EP⊥EQ,则·的最小值为(  ) A. B. C. D.1 11.若椭圆+=1(a>b>0)上存在一点M,使得∠F1MF2=90°(F1,F2分别为椭圆的左、右焦点),则椭圆的离心率e的取值范围为    . 12.已知椭圆E:+=1(a>b>0)的离心率e=,并且经过定点P. (1)求椭圆E的方程; (2)设椭圆E的左、右焦点分别为F1,F2,M(x0,y0)为E上的一点,若△MF1F2为直角三角形,求y0的值. 13.1955年10月29日新疆克拉玛依一号油井出油,标志着新中国第一个大油田的诞生,克拉玛依大油泡是一号油井广场上的标志性建筑,成为市民与游客的打卡网红地,形状为椭球型,中心截面为椭圆C:+=1,已知动点P在椭圆C上,若点A的坐标为(3,0),点M满足||=1,·=0,则||的最小值是    . 14.有一椭圆形溜冰场,长轴长是100 m,短轴长是60 m.现要在这个溜冰场上划定一个各顶点都在溜冰场边界上的矩形,且使这个矩形的面积最大,试确定这个矩形的顶点的位置.这时矩形的周长是多少? 2.5.2 椭圆的几何性质 1.B 椭圆的长轴长为10,焦距为8,所以2a=10,2c=8,可得a=5,c=4,所以b2=a2-c2=25-16=9,可得b=3,所以该椭圆的短轴长2b=6,故选B. 2.C 由3x2+8y2=24化简可得+=1,焦点为(±,0)在x轴上,同时又过(3,2)点,设+=1,有解得a2=15,b2=10,故选C. 3.D 由椭圆方程+=1得A(0,3),F1(-,0),F2(,0),∴|F1F2|=2.∴=|F1F2|·|yA|=×2×3=3.故选D. 4.A 椭圆的短轴长与长轴长的比值为=,椭圆的离心率公式为e====,故e1=,e2=,e3=,故e1>e2>e3.故选A. 5.BC 由+y2=1,可知a=,b=1,c=,则焦距2c=2,离心率e===.设P(x0,y0),易知圆心D(-1,0),半径r=,则|PD|===>,故圆D在椭圆C的内部.当|PD|取最小值时,|PQ|的最小值为-=.故选B、C. 6.+=1 解析:由题意可知e==,2b=4,得b=2,所以解得所以椭圆的标准方程为+=1. 7.35 解析:由椭圆的对称性及定义,知|P1F|+|P7F|=2a,|P2F|+|P6F|=2a,|P3F|+|P5F|=2a,|P4F|=a,所以|P1F|+|P2F|+|P3F|+|P4 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~