ID: 23709606

鲁教五四版七上1.3.4探索三角形全等的条件 分层作业(含答案)

日期:2025-12-16 科目:数学 类型:初中试卷 查看:59次 大小:254302B 来源:二一课件通
预览图 1/1
答案,作业,分层,条件,全等,三角形
  • cover
中小学教育资源及组卷应用平台 第一章 三角形 探索三角形全等的条件第四课时(分层作业) 1.在△ABC中,AD平分∠BAC,∠B=2∠ADB,AB=3,CD=6,则AC=    . 2.工人师傅常常利用角尺构造全等三角形的方法来平分一个角,如图,在∠AOB的两边OA、OB上分别在取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.这里构造全等三角形的依据是    . 3.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,∠A=∠D,BF=10,BC=6,则EC=    . 4.如图,在△ABC与△ADE中,AB=AD,∠C=∠E,请添加一个条件:    ,使△ABC≌△ADE. 1.如图,AB=6cm,AC=BD=4cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当点Q的运动速度为    cm/s时,△ACP与△BPQ全等. 2.如图,AB∥DE,∠B=∠E,AF=CD. (1)求证:AB=DE; (2)若∠A=45°,∠EFD=95°,求∠B的度数. 答案: 基础巩固: 9 ,2、SSS ,3、2 ,4、∠BAC=∠DAE(答案不唯一) . 培优提升: 1、解:设点Q的运动速度是x cm/s, ∵∠CAB=∠DBA, ∴△ACP与△BPQ全等有两种情况: 当,AC=BQ时,t=6﹣t, 解得:t=3, ∴3x=4, 解得:x,即点Q的运动速度是cm/s; 当AP=BQ,AC=BP时,t=tx,6﹣t=4, 解得:t=2,x=1,即点Q的运动速度是lcm/s; 综上所述,点Q的运动速度为1或cm/s,△ACP与△BPQ全等, 故答案为:1或. 2、(1)证明:∵AB∥DE,AF=CD. ∴∠A=∠D,AF﹣CF=CD﹣CF, ∴AC=DF, 在△ABC和△DEF中, , ∴△ABC≌△DEF(AAS), ∴AB=DE; (2)解:由(1)知:△ABC≌△DEF,且∠A=45°,∠EFD=95°, ∴∠BCA=∠EFD=95°, ∴∠B=180°﹣∠BCA﹣∠A=180°﹣95°﹣45°=40°. 21世纪教育网(www.21cnjy.com)

~~ 您好,已阅读到文档的结尾了 ~~