中小学教育资源及组卷应用平台 第一章 三角形 利用三角形全等测距离(分层作业) 1.如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长.判定△EDC≌△ABC的理由是( ) A.SSS B.ASA C.AAS D.SAS 2.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点O,连接AO并延长到C,使AO=CO;连接BO并延长到D,使BO=DO,连接CD.可以证△ABO≌△CDO,得CD=AB,因此,测得CD的长就是AB的长.判定△ABO≌△CDO的理由是( ) A.SSS B.ASA C.AAS D.SAS 3.如图所示小明设计了一种测工件内径AB的卡钳,问:在卡钳的设计中,AO、BO、CO、DO 应满足下列的哪个条件?( ) A.AO=CO B.BO=DO C.AC=BD D.AO=CO且BO=DO 4.如图所示,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( ) A.大于100 m B.等于100 m C.小于100 m D.无法确定 1.如图,公园里有一条“Z”字型道路ABCD,其中AB∥CD,在AB,BC,CD三段道路旁各有一只小石凳E、M、F,M恰为BC的中点,且E,M,F在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B,E之间的距离,你能想出解决的方法吗?请说明其中的道理. 答案: 基础巩固: A ,2、D ,3、D ,4、B . 培优提升: 1、解:因为AB∥CD,所以∠B=∠C. 在△BME和△CMF中, ∠B=∠C,BM=CM,∠BME=∠CMF, 所以△BME≌△CMF(ASA),所以BE=CF. 故只要测量CF即可得B,E之间的距离. 21世纪教育网(www.21cnjy.com)
~~ 您好,已阅读到文档的结尾了 ~~