首页
初中数学课件、教案、试卷中心
用户登录
资料
搜索
ID: 23767132
22.3 实践与探索 同步练(含答案) 2025-2026学年数学华东师大版(2024)九年级上册
日期:2025-09-21
科目:数学
类型:初中试卷
查看:18次
大小:8024109B
来源:二一课件通
预览图
0
张
2025-2026
,
九年级
,
2024
,
华东师大
,
数学
,
学年
22.3 实践与探索 第1课时 利用一元二次方程解决几何与变化率问题 1.列方程解应用题的一般步骤. ①审题;②设未知数;③ ;④列方程;⑤ ;⑥答. 2.列方程解决面积类问题,一般是找出图形面积的数量关系,根据面积关系列方程,需要根据图形的特征寻找表示图形面积的关系式. 3.平均变化率问题规律:若平均增长(或降低)百分率为x,增长(或降低)前的量是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为 .(其中增长取“+”,降低取“-”). 考点1 利用一元二次方程解决围墙问题 【典例1】如图,利用一面墙(墙的长度不限),用20 m长的篱笆,怎样围成一个面积为50 m2的长方形场地? 解决围墙问题,需要注意铁栏总长用于矩形的哪些边,解出所得的长不能超过围墙的长,若是有留门问题,实质是铁栏的总长多出门的宽度,根据所设未知数,将矩形的长和宽表示出来,根据其面积得出等量关系求解即可. 【变式训练】 1.如图,某小区建一长方形电动车充电棚,一边靠墙(墙长15米),另三边用总长25米的栏杆围成,留1米宽的门,若想要建成面积为80平方米的电动车充电棚,则车棚垂直于墙的一边的长为多少米? 考点2 利用一元二次方程解决变化率问题 【典例2】某网店9月份盈利20 000元,11月份盈利28 800元,且从9月到11月,每个月盈利的增长率相同,求这两个月每个月盈利的增长率. 求平均增长率(降低率)问题:一般列方程a(1±x)n=b,其中a为原始数据,b为增长(降低)后的数据,n为变化次数,x为增长率(降低率). 【变式训练】 2.某商场在节日期间将单价200元的某商品经过连续两次降价后,现在的价格为128元.求平均每次降价的百分率. 知识点1 用一元二次方程解决图形面积问题 1.(黑龙江哈尔滨中考)为了改善居民生活环境,云宁小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x米,根据题意,所列方程正确的是( ) A.x(x-6)=720 B.x(x+6)=720 C.x(x-6)=360 D.x(x+6)=360 2.(海南海口秀英区校级期中)如图,在宽为20米、长为34米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540平方米,则道路的宽为( ) A.2 B.2或35 C.1 D.1或35 知识点2 用一元二次方程解决变化率问题 3.(海南海口龙华区校级期中)某电影一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达12亿元,若把增长率记作x,则方程可列为( ) A.3(1+x)=12 B.3(1+x)2=12 C.3+3(1+x)2=12 D.3+3(1+x)+3(1+x)2=12 4.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为200元的药品进行连续两次降价后为162元,则平均每次降价的百分率为 . 5.为服务全民健身战略,学校体育馆周末面向社会开放.据统计,2月入馆128人次,入馆人次逐月增加,4月达到288人次.设入馆人次的月均增长率相同. (1)求入馆人次的月均增长率; (2)受条件限制,体育馆月接纳能力不能超过400人次.在入馆人次的月均增长率不变的前提下,体育馆能接纳5月的入馆人次吗?请说明理由. 6.(河南漯河召陵区期中)2024年4月23日是第29个世界读书日.读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一.据统计,某书院对外开放的第一个月,进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2 850人次,若进书院人次的月平均增长率为x,则可列方程为( ) A.600(1+2x)=2 850 B.600(1+x)2=2 850 C.600+600(1+x)+600(1+x)2=2 850 D.2 850(1-x)2=600 7.(海南澄迈县期中)如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6 cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 ... ...
~~ 您好,已阅读到文档的结尾了 ~~
立即下载
免费下载
(校网通专属)
登录下载Word版课件
同类资源
2024-2025学年河南省信阳市平桥区八年级(上)期末数学试卷(含答案)(2025-09-18)
2024-2025学年河南省商丘市夏邑县七年级(上)期末数学试卷(含答案)(2025-09-18)
2024-2025学年湖南省衡阳市常宁市七年级(上)期末数学试卷(含简略答案)(2025-09-18)
2024-2025学年河南省南阳市油田七年级(上)期末数学试卷(B卷)(含简略答案)(2025-09-18)
2024-2025学年湖南省永州市冷水滩区九年级(上)期末数学试卷(含答案)(2025-09-18)
上传课件兼职赚钱