
中小学教育资源及组卷应用平台 第三章 概率的进一步认识(能力提升) 一、单选题 1.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( ) A. B. C. D. 2.现有4张卡片,正面图案如图所示,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( ) A. B. C. D. 3.生活在数字时代的我们,很多场合都要用到二维码,二维码采用黑白相间的图形来记录数据符号信息.丹丹帮妈妈打印了一个收款二维码如图所示,该二维码的面积为,她在该二维码纸内随机掷点,经过大量重复试验,发现点落在黑色区域的频率稳定在左右,则据此估计此二维码中白色区域的面积为( ) A. B. C. D. 4.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( ) A. B. C. D. 5.一个暗箱里放有a个完全相同的白球,为了估计暗箱里球的个数,放入3个红球,这两种球除颜色外其他均相同,将球搅拌均匀后任意摸出一个球,记下颜色再放回暗箱,搅匀后重复摸球.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%左右,那么a的值大约是( ) A.12 B.9 C.4 D.3 6.一个口袋中装有10个红球和若干个黄球,在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋大约有( )个黄球. A.7 B.10 C.15 D.20 二、填空题 7.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是 . 8.某校举行“红船颂”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是 9.为了解古代数学文化知识,小明去图书馆借阅古代数学名著学习,随机从《周髀算经》《九章算术》《几何原本》和《算书九章》中选择两本,则他没有选《几何原本》的概率为 . 10.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是 . 11.小芳随机地向如图所示的圆形簸箕内撒了几把豆子,则豆子落到圆内接正方形(阴影部分)区域的概率是 . 12.在一个不透明的袋子里有1个红球,2个白球和若干个黑球.小宇将袋子中的球摇匀后,从中任意摸出一个,记下颜色后放回袋中,在多次重复以上操作后,小宇统计了摸到红球的频率,并绘制了如图折线图.则从袋子中随机摸出两个球,这两个球一红一白的概率为 . 三、计算题 13.为了提高同学们的学习积极性,某校九年级举行了“数学知识竞赛”活动,并随机抽查了部分参赛同学的成绩,整理并制作图表如下: 分数段 频数 频率 30 0.1 90 0.4 60 0.2 请根据图表提供的信息,解答下列问题: (1)请求出:_____,_____,抽查的总人数为_____人; (2)抽查成绩的中位数应落在_____分数段内; (3)若满分人数有甲、乙、丙、丁四人,现决定从这四名同学中任选两名参加市里的决赛,求恰好选中甲、乙两位同学的概率.(用树状图或列表法解答) 14.圆周率是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究.目前,超级计算机已计算出的小数部分超过31.4万亿位.有学者发现,随着小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同. (1 ... ...
~~ 您好,已阅读到文档的结尾了 ~~