
【沪科版】七年级(下册)数学:知识点总结 第6章 实数 平方根 知识点一、平方根和算术平方根的概念 1.算术平方根的定义 如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);的算术平方根记作,读作“的算术平方根”,叫做被开方数. 要点诠释:当式子有意义时,一定表示一个非负数,即≥0,≥0. 2.平方根的定义 如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为,其中是的算术平方根. 知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:和 2.联系:(1)平方根包含算术平方根; (2)被开方数都是非负数; (3)0的平方根和算术平方根均为0. 要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根. 知识点三、平方根的性质 知识点四、平方根小数点位数移动规律 被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,,,. 立方根 要点一、立方根的定义 如果一个数的立方等于,那么这个数叫做的立方根或三次方根.这就是说,如果,那么叫做的立方根.求一个数的立方根的运算,叫做开立方. 要点诠释:一个数的立方根,用表示,其中是被开方数,3是根指数. 开立方和立方互为逆运算. 要点二、立方根的特征 立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0. 要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质 要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律 被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,,,,. 实数 要点一、有理数与无理数 有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式. (2)常见的无理数有三种形式:①含类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如. 要点二、实数 有理数和无理数统称为实数. 1.实数的分类 按定义分: 实数 按与0的大小关系分: 实数 2.实数与数轴上的点一一对应. 数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应. 要点三、实数大小的比较 对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算 有理数关于相反数和绝对值的意义同样适合于实数. 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 第7章 一元一次不等式与不等式组 不等式及其性质 要点一、不等式的概念 一般地,用“<”、 “>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2)五种不等号的读法及其意义: 符号 读法 意义 “≠” 读作“不等于” 它说明两个量之间的关系是 ... ...
~~ 您好,已阅读到文档的结尾了 ~~