ID: 23956355

6.2.1 直线、射线、线段 课后培优提升训练(含答案)人教版2025—2026学年七年级上册

日期:2025-10-13 科目:数学 类型:初中试卷 查看:88次 大小:284671B 来源:二一课件通
预览图 1/3
6.2.1,七年级,学年,2026,2025,人教
  • cover
中小学教育资源及组卷应用平台 6.2.1直线、射线、线段课后培优提升训练人教版2025—2026学年七年级上册 一、选择题 1.下列说法正确的是( ) A.直线a比直线b长 B.延长直线,使得它经过点P C.因为两点确定一条直线,所以任何三个点都不可能在一条直线上. D.经过两点有且只有一条直线 2.如图,是一段高铁行驶路线图,图中字母表示的个点表示个车站.在这段路线上往返行车(  )种车票. A.20 B.11 C.12 D.13 3.平面内三点可确定的直线的条数为( ). A.3 B.0或1 C.1或3 D.0 4.下列说法错误的是( ). A.经过一点的直线有无数条 B.经过两点的直线只有一条 C.一条直线上只有两个点 D.两条直线相交,只有一个交点 5.两条直线相交,把一个平面分成4部分,三条直线相交,最多可以将平面分成7部分,那么10条直线相交,最多可以将平面分成( )部分 A.53 B.54 C.55 D.56 6.如图,经过刨平的木板上的两个点,只能弹出一条笔直的墨线.这一事实可以描述为( ) A.垂线段最短 B.两点确定一条直线 C.过一点有且只有一条直线与已知直线平行 D.线段垂直平分线上的点到这条线段两个端点的距离相等 7.在图中,不同线段的条数是( ). A.4 B.5 C.10 D.12 8.平面上互不重合的三条直线相互间的交点个数是( ) A.3 B.1或3 C.1或2或3 D.0或1或2或3 二、填空题 9.生活情境·摆正桌子 小明同学在打扫教室卫生时,发现课桌很不整齐,他思考了一下,将第一张课桌和最后一张课桌固定之后,沿着第一张课桌和最后一张课桌这条线就把课桌摆整齐了!他利用的数学原理是: . 10.往返于甲、乙两地的火车,途中停靠三个站,则至多要准备 种车票. 11.一平面内共有10条直线,它们之间的位置关系未知,这10条直线最多有 个交点. 12.已知A,B,C,D,E五个点不在同一直线上,过其中任意两点作一条直线,可作出直线的条数为 . 三、解答题 13.【试验观察】 (1)如图①,已知两点确定一条直线,则: 图②中不在同一直线上的3个点最多可以确定_____条直线; 图③中不在同一直线上的4个点最多可以确定_____条直线; 图④中不在同一直线上的5个点最多可以确定_____条直线. 【探索归纳】 (2)如果平面内有个点,且任意3个点均不在同一直线上,那么最多可以确定_____条直线.(用含n的代数式表示) 【解决问题】 (3)某次班级聚会中,45名同学每两人之间都要握1次手问好,那么他们共握了多少次手? 14.探索题 如图,线段上的点数与线段的总数有如下关系:如果线段上有三个点时,线段总共有3条,如果线段上有4个点时,线段总数有6条,如果线段上有5个点时,线段总数共有10条,… 【观察思考】 (1)当线段上有6个点时,线段总数共有_____条. 【模型构建】 (2)当线段上有n个点时,线段总数共有_____条. 【拓展应用】 (3)请你用上述模型构建来解决以下问题: 十五个同学聚会,每个人都与其他人握一次手,共握手多少次? 15.【阅读思考】 如表反映了平面内直线条数与它们最多交点个数的对应关系. 图形 … 直线条数 2 3 4 … 最多交点个数 1 … 【延伸探究】 (1)按此规律,5条直线相交,最多有_____个交点; (2)平面内的8条直线任意两条都相交,交点数最多有x个,最少有y个,请求出的值; 【实践应用】 (3)学校七年级6个班级举行足球联赛,比赛采用单循环赛制(即每两支队伍之间赛一场),当比赛到某一天时,统计出七1,七2,七3,七4,七5五个班级已经分别比赛了5,4,3,2,1场球,请直接写出没有与七6班比赛的班级,并求出还剩的比赛总场数. 16.一列火车往返于芜湖、杭州两个城市,中途经过宣城、广德、长兴南和德清西4个站点(共6个站点),不同的车站往返需要不同的车票. (1)共有多少种不同的 ... ...

~~ 您好,已阅读到文档的结尾了 ~~