ID: 24003523

人教版九年级上册25.1随机事件与概率 同步课堂(含答案)

日期:2025-10-14 科目:数学 类型:初中试卷 查看:46次 大小:501510B 来源:二一课件通
预览图 0
人教,九年级,上册,25.1,随机,事件
    25.1随机事件与概率 【知识点1】随机事件 1 【知识点2】可能性的大小 1 【知识点3】概率公式 2 【知识点4】概率的意义 2 【知识点5】几何概率 2 【题型1】简单事件的概率 3 【题型2】确定事件 5 【题型3】事件发生的可能性大小 8 【题型4】不可能事件 10 【题型5】必然事件 13 【题型6】与几何图形有关的概率 16 【题型7】随机事件 18 【知识点1】随机事件 (1)确定事件 事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的. (2)随机事件 在一定条件下,可能发生也可能不发生的事件,称为随机事件. (3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中, ①必然事件发生的概率为1,即P(必然事件)=1; ②不可能事件发生的概率为0,即P(不可能事件)=0; ③如果A为不确定事件(随机事件),那么0<P(A)<1. 【知识点2】可能性的大小 随机事件发生的可能性(概率)的计算方法: (1)理论计算又分为如下两种情况: 第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算. (2)实验估算又分为如下两种情况: 第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率. 第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验. 【知识点3】概率公式 (1)随机事件A的概率P(A)=. (2)P(必然事件)=1. (3)P(不可能事件)=0. 【知识点4】概率的意义 (1)一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p. (2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现. (3)概率取值范围:0≤p≤1. (4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0. (4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0. (5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题. 【知识点5】几何概率 所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即 P=g的测度G的测度 简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等. 【题型1】简单事件的概率 【典型例题】第33届夏季奥运会将于2024年7月26日———8月11日在法国巴黎举行,如图的五张卡片(除正面图案外完全相同)分别印有巴黎奥运会的项目图标:篮球、跳水、赛跑、骑行和花样游泳,其中跳水和花样游泳是水上项目,现将五张卡片背面朝上放置,打乱后随机抽取一张,抽到卡片上的图标恰好是水上项目的概率是(  ) A. B. C. D. 【答案】D ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~