ID: 24111488

5.2 解一元一次方程—去括号与去分母(2) 教学设计(表格式)

日期:2025-10-19 科目:数学 类型:初中教案 查看:83次 大小:144562B 来源:二一课件通
预览图 1/1
一元,一次方程,括号,分母,教学设计,格式
  • cover
课时教学设计 第 14 周 第 3 课时 新课题目 5.2 解一元一次方程--去括号与去分母(2) 教学目标 (核心素养) 1.会根据方程的特点,正确而熟练地去分母;能较熟练地通过去分母解一元-次方程;归纳、掌握解一元一次方程的一般步骤. 2.在解决实际问题的过程中理清基本的数量关系,并能列出方程,感受方程对解诀实际问题的作用. 3.渗透方程,思想,培养学生的方程意识;体会数学的化归思想:把复杂变简单,将未知变已知的作用,体会数学的应用价值. 4.素养目标:按照一定的规则和步骤进行数学运算,保证运算的准确性和合理性. 重 点 会通过去分母解一元一次方程,归纳解一元一次方程的一般步骤,体会解方程中的化归思想. 难 点 进一步熟悉如何设未知数列方程解应用题,体会方程思想在解决实际问题的作用., 教 具 ppt课件 教学方法 引导法,讲授法,探究发 教学设计 (教学过程包括新课导入、新课教学、师生互动、课堂小结、课堂练习等,教师二次备课使用其他颜色的笔在原备课内容上修改、标注) 教学过程设计: 设计意图 问题4 如图,翠湖在青山、绿水两地之间,距青山50km,距绿水70km.某天,一辆汽车匀速行驶,途经王家庄、青山、绿水三地的时间如表所示.王家庄距翠湖的路程有多远? 解:设王家庄距翠湖的路程为xkm,则王家庄距青山的路程为(x-50)km,王家庄距绿水的路程为(x+70)km.由上表可知,汽车从王家庄到青山的行驶时间为3h,从王家庄到绿水的行驶时间为5h.根据汽车在各段的行驶速度相等,列得方程,还能列得方程:, 解方程1 这个方程中未知数的系数不是整数,如果能化去分母,把未知数的系数化成整数,就可以使解方程中的计算更简便些. 本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤 我们知道,等式两边乘同一个数,结果仍相等.这个方程中各分母的最小公倍数是15,方程两边都乘15,得 5(x-50)=3(x+70) 去括号,得 5x-250=3x+210 移项,得 5x-3x=210+250 合并同类项,得 2x=460 系数化为1,得 x=230 因此,王家庄距翠湖的路程为230km. 解方程2 归纳 解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等. 通过这些步骤,可以使以x为未知数的方程逐步转化为x=m的形式. 这个过程主要依据等式的性质和运算律等. 解一元一次方程的步骤不是一成不变的,有时可以省略某个步骤,有时可以先去括号或者先合并同类项再去分母,要根据方程的特点灵活运用. 例7 解下列方程: 1) (2) 解:(1)去分母(方程两边乘4),得 (2)去分母(方程两边乘6),得 2(x+1)-4=8+(2-x) 18x+3(x-1)=18-2(2x-1) 去括号,得 2x+2-4=8+2-x 去括号,得 18x+3x-3=18-4x+2 移项,得 2x+x=8+2-2+4 移项,得 18x+3x+4x=18+2+3 合并同类项,得 3x=12 合并同类项,得 25x=23 系数化为1,得 x=4 系数化为1,得 练习 1.解下列方程: (1) (2) ( 通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便. 在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号. 3) (4) 2.伦敦大英博物馆保存着一部极其珍贵的文物———莱茵德纸草书.这是古埃及人用象形文字写在一种用纸莎草压制成的草片上的著作.书中记载了许多数学的问题,其中一道著名的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33. 这个数是多少?请你用方程解决这个问题. 3.一辆客车和一辆卡车 ... ...

~~ 您好,已阅读到文档的结尾了 ~~