无锡市第六高级中学2025年10月高三教学质量调研数学试卷 答案和解析 一、单选题 1. B 2. D 3. 4. D 5. 6. C 7. 8. A 二、多选题 9. ACD 10. AC 11. 三、填空题 12. 13. 14. 四、解答题 15.【答案】解:由题意,设, 因为,所以,即,......................................2分 又因为向量的夹角为, 所以,解得, ......................................4分 将代入,解得, 所以或. ......................................6分 因为, 所以,即, 所以, ......................................8分 所以 , ......................................10分 所以当时,有最小值. ......................................13分 16.【答案】(1)在中,由及正弦定理,得,···········2分 则,而,, 因此,解得,所以. ·········································································5分 (2)由(1)知,由,得,·································7分 ,····························11分 由正弦定理得,而, 所以. ····························15分 17.【答案】解:由于为奇函数,且定义域为, ,即,. ······························2分 当时, , 时为奇函数. ......................................4分 , , 是偶函数,, , 得到, ......................................6分 由此可得:的值为. ·································7分 ,, ·································9分 又在区间上是增函数, 当时,, ·································11分 由题意得 综上,的取值范围 ·································15分 18.【答案】解:(1) 当a=0时,f(x)=x3+3x2+1,所以f′(x)=3x2+6x=3x(x+2), 令f′(x)=0,得x=0或x=-2. ……………………… (1分) 列表如下: x (-∞,-2) -2 (-2,0) 0 (0,+∞) f′(x) + 0 - 0 + f(x) ? 极大值 ? 极小值 ? 所以f(x)在x=-2处取极大值,即x1=-2,且f(x1)=5. ………………………… (3分) 由f(x1)=f(x3)=5,所以x+3x+1=5,即x+3x-4=0,所以(x3-1)(x3+2)2=0. 因为x1≠x3,所以x3=1, …………………………(5分) 所以2x1+x3=-3. …………………………(6分) (2) 由f′(x)=3x2+6x+a,因为x1,x2分别是f(x)的极大值点和极小值点, 所以x1,x2是方程f′(x)=0的两个不相等的实根,且36-12a>0,即a<3, 所以 …………………………(8分) 因为f(x1)+f(x2)=(x+3x+ax1+1)+(x+3x+ax2+1) =(x1+x2)[(x1+x2)2-3x1x2]+3[(x1+x2)2-2x1x2]+a(x1+x2)+2 =(-2)[(-2)2-3×]+3[(-2)2-2×]+a×(-2)+2=6-2a, 又f(x1)+f(x2)≤5,所以6-2a≤5,解得a≥. 综上,≤a<3. …………………………(12分) 19.【答案】解 (1)因为,所以,,··············2分 令,解得或,令,解得; 所以的单调递增区间为和,单调减区间为. ·············································5分 (2)由题意知:,, 有两个不等正根, ,解得:,··········································································· ... ...
~~ 您好,已阅读到文档的结尾了 ~~