ID: 24210007

4.2 第2课时 等差数列的性质(课件 讲义)高中数学 人教A版(2019)选择性必修 第二册

日期:2025-10-28 科目:数学 类型:高中学案 查看:14次 大小:2166596B 来源:二一课件通
预览图 0
人教,第二,必修,选择性,2019,高中
    (课件网) 第四章 数列 4.2 等差数列 第2课时 等差数列的性质 学习 目标 1. 能用等差数列的定义推导等差数列的性质. 2. 能用等差数列的性质解决一些相关问题,包括简单的应用问题. 典例精讲 能力初成    (教材P16例3)某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值就会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价值的5%,设备将报废.请确定d的取值范围. 1 等差数列的实际应用 探究 1 【解答】 解决实际应用问题,首先要认真领会题意,根据题目条件,寻找有用的信息.合理地构建等差数列模型是解决这类问题的关键.在解题过程中,一定要分清首项、项数等关键的问题.     在通常情况下,从地面到10 km高空,高度每增加1 km,气温就下降某一个固定数值.如果1 km 高度的气温是8.5 ℃,5 km高度的气温是-17.5 ℃,那么4 km高度的气温是_____℃. 【解析】 用{an}表示自下而上n km高度气温组成的等差数列,则a1=8.5,a5= -17.5,由a5=a1+4d=8.5+4d=-17.5,解得d=-6.5,所以an=15-6.5n,所以a4=-11. 变式 -11    (1) (教材P17例5补充)已知数列{an}是等差数列,若a1-a9+a17=7,则a3+a15等于 (  ) A. 7  B. 14 C. 21  D. 7(n-1) 2 等差数列的性质 【解析】 因为a1-a9+a17=(a1+a17)-a9=2a9-a9=a9=7,所以a3+a15=2a9=2×7=14. B 探究 2 (2) 已知数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么数列{an+bn}的第37项为 (  ) A. 0  B. 37 C. 100  D. -37 【解析】 设等差数列{an},{bn}的公差分别为d1,d2,则(an+1+bn+1)-(an+bn)=(an+1-an)+(bn+1-bn)=d1+d2,所以数列{an+bn}仍然是等差数列.又因为d1+d2=(a2+b2)-(a1+b1)=100-(25+75)=0,所以a37+b37=a1+b1=100. C (1) 若{an},{bn}是公差分别为d,d′的等差数列,则有: 数列 结论 {c+an} 公差为d的等差数列(c为任一常数) {c·an} 公差为cd的等差数列(c为任一常数) {an+an+k} 公差为2d的等差数列(k为常数,k∈N*) {pan+qbn} 公差为pd+qd′的等差数列(p,q为常数) (2) 下标性质:在等差数列{an}中,若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq.特别地,若m+n=2p(m,n,p∈N*),则有am+an=2ap.     (1) 在等差数列{an}中,若4(a2+a5+a8)+6(a6+a10)=132,则a4+a9等于 (  ) A. 9  B. 10 C. 11  D. 12 【解析】 在等差数列{an}中,4(a2+a5+a8)+6(a6+a10)=132,由等差数列的性质可得12a5+12a8=132,所以a5+a8=11,故a4+a9=a5+a8=11. 变式 C (2) 已知{an},{bn}是两个等差数列,其中a1=3,b1=-3,且a20-b20=6,那么a10-b10的值为 (  ) A. -6  B. 6 C. 0  D. 10 【解析】 由于{an},{bn}都是等差数列,所以{an-bn}也是等差数列,而a1-b1=6,a20-b20=6,所以{an-bn}是常数列,故a10-b10=6. B    已知递减等差数列{an}的前三项和为18,前三项的乘积为66,求数列{an}的通项公式,并判断-34是否为该数列的项. 3 灵活设元解等差数列 【解答】 方法一:设该等差数列的前三项为a-d,a,a+d,则(a-d)+a+(a+d)=3a=18,解得a=6.又前三项的乘积为66,所以6×(6+d)(6-d)=66,解得d=±5.由于该数列为递减数列,所以d=-5,且首项为11,所以通项公式为an=11+(n-1)×(-5)=-5n+16.令-5n+16=-34,解得n=10,所以-34是数列{an}的第10项. 探究 3 等差数列的设项方法与技巧 (1) 当已知条件中出现与首项、公差有关的内容时,可直接设 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~