3.6直线和圆的位置关系 【题型1】直线和圆的位置关系 6 【题型2】切线的性质 7 【题型3】切线性质与勾股定理综合 8 【题型4】切线的判定 10 【题型5】切线的性质与判定的综合 11 【题型6】三角形的内心及其性质 12 【题型7】与三角形内切圆相关的计算或证明 14 【知识点1】直线与圆的位置关系 (1)直线和圆的三种位置关系: ①相离:一条直线和圆没有公共点. ②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点. ③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线. (2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d. ①直线l和⊙O相交 d<r ②直线l和⊙O相切 d=r ③直线l和⊙O相离 d>r. 1.(2024秋 渝北区校级期中)已知圆心A到直线m的距离为d,⊙A的半径为r,若d、r是方程x2-7x+12=0的两个根,则直线m和⊙A的位置关系是( ) A.相切B.相离C.相交D.相离或相交 【知识点2】切线的性质 (1)切线的性质 ①圆的切线垂直于经过切点的半径. ②经过圆心且垂直于切线的直线必经过切点. ③经过切点且垂直于切线的直线必经过圆心. (2)切线的性质可总结如下: 如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直. (3)切线性质的运用 运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题. 1.(2025春 高新区校级月考)如图,射线PA,PB切⊙O于点A,B,直线DE切⊙O于点C,交PA于点D,交PB于点E,若△PDE的周长是12cm,则PA的长是( ) A.6cmB.3cmC.24cmD.12cm 【知识点3】切线的判定 (1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线. (2)在应用判定定理时注意: ①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线. ②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的. ③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”. 1.(2024秋 赣榆县校级月考)如图,△ABC中,AB=AC,以AB为直径的⊙O交AC于E,交BC于D,DF⊥AC于F.给出以下五个结论:①BD=DC;②CF=EF;③弧AE=弧DE;④∠A=2∠FDC;⑤DF是⊙O的切线.其中正确的有( ) A.5个B.4个C.3个D.2个 2.(2024 岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是( ) A.①②B.①②③C.①④D.①②④ 【知识点4】切线的判定与性质 (1)切线的性质 ①圆的切线垂直于经过切点的半径. ②经过圆心且垂直于切线的直线必经过切点. ③经过切点且垂直于切线的直线必经过圆心. (2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线. (3)常见的辅助线的: ①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”; ②有切线时,常常“遇到切点连圆心得半径”. 【知识点5】弦切角定理 (1)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角. (2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的 ... ...
~~ 您好,已阅读到文档的结尾了 ~~