首页
初中数学课件、教案、试卷中心
用户登录
资料
搜索
ID: 24329532
2.4.1有理数的乘方 课件(共27张PPT)2025-2026学年七年级数学上册北师大版(2024)
日期:2025-12-04
科目:数学
类型:初中课件
查看:99次
大小:5489204B
来源:二一课件通
预览图
1/9
张
2025-2026
,
北师大
,
上册
,
数学
,
七年级
,
学年
(
课件网
) 幻灯片 1:封面 课程名称:2.4.1 有理数的乘方 授课人:[您的姓名] 授课班级:[具体班级] 日期:[具体日期] 幻灯片 2:学习目标 理解有理数乘方的概念,掌握乘方的表示方法及各部分名称。 能准确进行有理数的乘方运算,明确乘方运算的符号规律。 体会乘方与乘法的联系,感受从特殊到一般的数学思想。 能运用乘方知识解决简单的实际问题,培养数感和运算能力。 幻灯片 3:情境引入 - 折纸与细胞分裂 折纸问题:一张纸的厚度约为 0.1 毫米,对折 1 次后厚度变为 2×0.1 毫米,对折 2 次后变为 2×2×0.1 毫米,对折 3 次后变为 2×2×2×0.1 毫米…… 对折 n 次后厚度是多少? 细胞分裂:一个细胞每次分裂成 2 个,1 次分裂后有 2 个细胞,2 次分裂后有 2×2 个细胞,3 次分裂后有 2×2×2 个细胞……n 次分裂后有多少个细胞? 思考:这些问题中都出现了相同因数的乘法,如何简便表示这种运算? 幻灯片 4:乘方的概念 定义:求 n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。 表示方法:n 个相同因数 a 相乘,记作\(a^n\),即\(a a a a\)(n 个 a)\(=a^n\)。 各部分名称: 在\(a^n\)中,a 叫做底数,n 叫做指数,\(a^n\)读作 “a 的 n 次幂” 或 “a 的 n 次方”。 例如:在\(3^4\)中,底数是 3,指数是 4,读作 “3 的 4 次幂” 或 “3 的 4 次方”,表示 4 个 3 相乘,即\(3 3 3 3\)。 特别说明: 指数为 1 时,通常省略不写,如\(a^1 = a\)。 底数可以是正数、负数或 0,但要注意底数的符号对幂的影响。 幻灯片 5:乘方与乘法的关系 联系:乘方是特殊的乘法运算,即相同因数的乘法运算可以用乘方表示。 示例:\(2 2 2 2 = 2^4\),\((-3) (-3) (-3) = (-3)^3\)。 区别:乘法是求几个不同或相同因数的积,乘方特指求 n 个相同因数的积。 转化:乘方运算可以转化为乘法运算进行计算,如\(5^3 = 5 5 5 = 125\)。 幻灯片 6:有理数乘方的符号规律 正数的乘方:正数的任何次幂都是正数。 示例:\(2^2 = 4\),\(3^3 = 27\),\(0.5^4 = 0.0625\)。 负数的乘方: 负数的奇次幂是负数。例如:\((-2)^3 = -8\),\((-1)^5 = -1\)。 负数的偶次幂是正数。例如:\((-2)^2 = 4\),\((-3)^4 = 81\)。 0 的乘方:0 的任何正整数次幂都是 0,即\(0^n = 0\)(n 为正整数)。 规律总结: 幂的符号由底数的符号和指数的奇偶性共同决定。 当底数为正时,幂的符号一定为正;当底数为负时,指数为奇则幂为负,指数为偶则幂为正。 幻灯片 7:典型例题 1 - 乘方的计算 例题:计算下列各题 \(5^3\) 分析:表示 3 个 5 相乘,即\(5 5 5\)。 解答:\(5^3 = 5 5 5 = 125\)。 \((-3)^4\) 分析:底数是 - 3,指数是 4(偶数),幂为正数,计算\(3 3 3 3\)。 解答:\((-3)^4 = (-3) (-3) (-3) (-3) = 81\)。 \(-2^4\) 分析:注意与\((-2)^4\)的区别,这里表示\(-(2 2 2 2)\),底数是 2,指数是 4。 解答:\(-2^4 = -(2 2 2 2) = -16\)。 \((-\frac{1}{2})^3\) 分析:底数是\(-\frac{1}{2}\),指数是 3(奇数),幂为负数,计算\((-\frac{1}{2}) (-\frac{1}{2}) (-\frac{1}{2})\)。 解答:\((-\frac{1}{2})^3 = -\frac{1}{8}\)。 幻灯片 8:易混淆概念辨析 \((-a)^n\)与\(-a^n\)的区别: \((-a)^n\):底数是\(-a\),指数是 n,表示 n 个\(-a\)相乘,幂的符号由 n 的奇偶性决定。 \(-a^n\):底数是 a,指数是 n,表示 n 个 a 相乘的相反数,幂的符号与 n 的奇偶性无关(仅与 a 的符号有关)。 示例:\((-2)^3 = -8\),\(-2^3 = -8\)(结果相同但意义不同);\((-2)^4 = 16\),\(-2^4 = -16\)(结果不同)。 分数的乘方:分数的乘方要给分数加上括号,如\((\frac{2}{3})^2 = \frac{2}{ ... ...
~~ 您好,已阅读到文档的结尾了 ~~
立即下载
免费下载
(校网通专属)
登录下载Word版课件
同类资源
北师大版(2024)八年级数学上册 第4章 一次函数 单元测试(含答案)(2025-12-02)
人教版(2024)八年级数学上册 第13章 三角形 单元测试(含答案)(2025-12-02)
人教版(2024)八年级数学上册 第15章 轴对称 单元测试(含答案)(2025-12-02)
北师大版九年级数学上册 第6章 反比例函数 单元测试(含答案)(2025-12-02)
人教版(2024)八年级数学上册 第14章 全等三角形 单元测试(含答案)(2025-12-02)
上传课件兼职赚钱