中小学教育资源及组卷应用平台 5.2.3一元一次方程的解法 学科 数学 年级 七年级 课型 新授课 单元 第五单元 课题 一元一次方程的解法 课时 5.2.3 课标要求 依据义务教育数学课程标准,本节课需引导学生经历从实际问题中抽象数量相等关系并列出方程的过程,体会方程作为刻画现实世界的数学模型的价值;掌握含括号的一元一次方程的解法,理解 “去括号” 步骤的数学依据(乘法分配律、等式性质),经历解方程中 “转化” 的数学思想;能正确、灵活应用解法步骤求解方程,并能根据实际问题的意义检验结果合理性;通过实践探索,提升分析和解决实际问题的能力,增强合作意识与应用意识。 教材分析 本节课是人教版七年级上册《一元一次方程》单元的核心课时,承接 “等式的性质”“移项与合并同类项” 等前置知识,是对一元一次方程解法的拓展与完善,为后续学习含分母的一元一次方程、二元一次方程组及一元二次方程奠定基础。教材以 “生活购物” 为典型情境,通过例题分层呈现 “去括号” 的运算规则,重点突出负系数去括号的符号处理,同时设计不同解法对比,渗透 “简便运算” 的优化思想,体现 “问题情境 — 建立模型 — 求解验证” 的编写逻辑,贴合七年级学生从具象到抽象的认知规律。 学情分析 七年级学生已具备小学简易方程的基础(以逆运算解法为主)和初中等式性质、移项合并的知识储备,但抽象思维仍处于过渡阶段,对 “代数建模” 的理解需依赖具体情境。学生易受小学逆运算思维的负迁移影响,在 “移项变号”“去括号漏乘”“负系数符号处理” 等环节存在易错点;多数学生能熟练求解纯计算型方程,但从实际问题中抽象等量关系、灵活设元的能力较弱,对 “方程的实用性” 认知不足,部分学生存在畏难情绪。 教学目标 1.能根据实际问题找准等量关系列含括号的一元一次方程;掌握“去括号”解一元一次方程的步骤,能正确求解此类方程。 2.通过小组合作分析实际问题,体会方程的建模思想;通过对比不同解法,提升运算的灵活性与严谨性。 3.在学习中感受数学与生活的联系,培养“严谨运算、灵活思考”的学习习惯。 教学重点 “去括号”解一元一次方程的步骤;实际问题中等量关系的建立。 教学难点 去括号时的符号处理、漏乘问题;不同设元方式下的方程构建。 教法与学法分析 教法采用 “情境驱动 + 问题链导学” 模式,结合情境教学法、小组合作探究法与错题诊疗法:通过 “班级采购账单” 大情境激发学习兴趣,以层层递进的问题链引导学生自主探究;利用例题对比、错题辨析突破重难点,注重教师的示范引领与精准点拨。学法上,引导学生采用 “自主尝试 — 合作交流 — 归纳总结” 的方式,通过独立解方程、小组讨论易错点、分享简便解法等活动,主动建构知识体系;鼓励学生运用 “错题整理”“方法归类” 的学习策略,深化对解法原理的理解,提升自主学习与合作探究的能力。 教学过程 教学步骤 教学主要内容 教师活动 学生活动 设计意图 环节一:依标靠本,独立研学 1.从生活账单到方程模型 小颖在超市买了1袋牛奶和4瓶矿泉水,她付给售货员20元,售货员找回3元。已知1瓶矿泉水比1袋牛奶贵0.5元,你能算出1袋牛奶多少钱吗? 你列出了怎样的方程? 如果设1袋牛奶 元,那么可列出方程 尝试·思考 (1)上面这个方程列得对吗?为什么?你还能列出不同的方程吗? 课本方程:设1袋牛奶的价格为元 请结合“付款、花费、找回钱”的关系,说明这个方程对应的等量关系是什么? 数量关系分析 ①已知“1瓶矿泉水比1袋牛奶贵0.5元”,因此1瓶矿泉水的价格为元; ②总花费 = 付款金额 - 找回金额,即元; ③总花费 = 1袋牛奶的总价 + 4瓶矿泉水的总价。 我的方程:设1瓶矿泉水的价格为元 数量关系分析 ①已知“1瓶矿泉水比1袋牛奶贵0. ... ...
~~ 您好,已阅读到文档的结尾了 ~~