ID: 24663655

2.2 用配方法求解一元二次方程 教学设计 初中数学北师大版(2024)九年级上册

日期:2025-12-23 科目:数学 类型:初中教案 查看:33次 大小:41570B 来源:二一课件通
预览图 1/2
用配,方法,求解,一元二次方程,教学设计,初中
  • cover
用配方法求解一元二次方程 一、教材分析 一元二次方程的解法是本章的重点内容,“配方法”是学生接触到的的第一种一元二次方程的精确解的求解方法,它是以直接开方法为基础的一次深入探究,是由特殊到一般的一个拓展过程,又对继续学习后面的公式法有着指导和铺垫的作用。在“配方法”的探索过程中体现了“化未知为已知”的数学思想方法,为今后学习高次方程、函数等奠定了基础,具有承上启下的作用。 二、学情分析 学生的知识技能基础:学生在八年级上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面两节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义; 学生活动经验基础:学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其精确解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。 三、教学任务分析 基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1的一元二次方程。本课《用配方法求解一元二次方程》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的素养目标是: 1、会用开方法解形如的方程,理解配方法,会用配方法解二次项系数为1的一元二次方程; 2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力; 3、体会转化的数学思想方法;能根据具体问题中的实际意义检验结果的合理性。 四、教法与学法分析 教法:新课标中指出数学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程。教法的确定要符合学生实际,能够激发学生的求知欲和兴趣,引导学生积极开展思维活动主动地获取新知。因此本课主要采用的是“问题———探究———问题”的教学模式和启发、探究式教学方法。 学法:由于九年级学生已能按思维的概括去观察事物,观察的精确性、概括性有所提高,他们通过观察进而能抓住事物的主要特点进行较为全面、深刻的分析,并能把个别事物同一般的原理、规则联系。因此,本节课将通过观察、比较、思考、交流、发现等活动,灵活地运用旧知识去研究新问题,在潜移默化中领会学习方法。使学生从“学会”到“会学”最后到“乐学”。 五、教学过程分析 本节课设计了五个教学环节:第一环节:复习回顾;第二环节:自主探究;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。 第一环节:复习回顾 活动内容: 1、如果一个数的平方等于,则这个数是 ,若一个数的平方等于7,则这个数是 。一个正数有几个平方根,它们具有怎样的关系? 2、用字母表示因式分解的完全平方公式。 实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。 第二环节:自主探究 (1)你能解哪些一元二次方程? (2)你会解下列一元二次方程吗?你是怎么做的? ; ; ; 。 (3)上节课,我们研究梯子底端滑动的距离满足方程,你能仿照上面几个方程的解题过程,求出的精确解吗 你认为用这种方法解这个方程的困难在哪 ... ...

~~ 您好,已阅读到文档的结尾了 ~~